Fountain Codes and

Locally Repairable Codes

Hong-Yeop Song
Yonsei University
Seoul, Korea
Feb. 2019
http://coding.yonsei.ac.kr

Contents

- Fountain Codes
\square Introduction to digital fountain
\square Approximations of digital fountain
\square Break
\square LT codes and Raptor codes
- Break time
- Locally Repairable Codes

Tutorial review on

Introduction to Digital Fountain

Binary Erasure Channels
Data Transmission
Data Carousel Approach
Fountain Code Paradigm
Ideal Digital Fountain
Examples of Binary Fountain codes

Wiki says...

- In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that
- a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that
- the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols.
- The term fountain or rateless refers to the fact that these codes do not exhibit a fixed code rate.

Wiki says...

- A fountain code is optimal if the original k source symbols can be recovered from any k encoding symbols.
- Fountain codes are known that have efficient encoding and decoding algorithms and that allow the recovery of the original k source symbols from any k^{\prime} of the encoding symbols with high probability, where k^{\prime} is just slightly larger than k.

Wiki says...

- LT codes were the first practical realization of fountain codes.
- Raptor codes and online codes were subsequently introduced, and achieve linear time encoding and decoding complexity through a pre-coding stage of the input symbols.

Discrete coding channel model

- A discrete coding channel is a model of communication channel including digital modem, $\mathrm{rx}(\mathrm{tx})$ antenna and analog physical (RF/CABLE) channel.
- It is characterized by (1) input alphabet (2) output alphabet, and (3) transition probabilities between these two.
- Famous examples are BSC, BEC, etc.

Binary Erasure Channel

- Many applications for data transmissions are based on the packet transmissions (over the wired or wireless internet with relatively "high" reliability)
- Packet losses on the packet based data transmission systems can be well modeled by the binary erasure channel (BEC), where received 0 or 1 is error-free with probability $1-p$.

$\operatorname{BEC}(p)$

Communication over Multiple Unknown BECs

Fountain codes is designed for...

Dissemination of bulk data to many users, where

(I) each user may choose when to receive,
(2) no retransmission is required, hence,
(3) no back channel for retransmission request is needed, and finally,
(4) reception of the same amount of data as the source data is enough to recover the original bulk data

Data Carousel Approach (Merry-go-round)

- The source repeatedly loops through transmission of all data packets
- Receivers may join the stream at any time
- Extremely high reception overhead
- Adding redundant codewords to the carousel
- Reduce reception overhead
- The source repeatedly loops through the set of coded blocks
- These approaches eliminate the need for retransmission requests
- can be thought as weak approximations of an ideal solution, digital fountain

Why the Name Fountain Code?

- Think of the symbols as drops of water
- Fill a bucket with these drops

- As soon as you have enough drops, the bucket is full, and you can drink your water
- It does not matter (1) which particular drops fill your bucket, or (2) when to receive the drops in which order, only the total amount matters

Point-to-Multipoint Communication

Digital Fountain Ideal

- An ideal digital fountain that transmits a file (consisting of \boldsymbol{k} symbols) should have the following properties:

1. It can generate an endless supply of encoding packets with constant encoding cost per symbol in terms of time or arithmetic operations
2. A user can reconstruct the file using any \boldsymbol{k} symbols with constant decoding cost per symbol, meaning that the decoding is linear in \boldsymbol{k}.

Digital Fountain (ideal case)

Digital Fountain

Approximating A Digital Fountain (in reality)

Binary Fountain Codes

- Notations
- $V=$ the k-tuple vector space over \mathbb{F}_{2}
- $V^{*}=V \backslash\left\{\mathbf{0}_{k \times 1}\right\}$
- Fix a distribution \mathcal{D} on V^{*}
- A binary fountain code is defined by parameters
(\mathcal{D}, k), where k is the number of input symbols

EXAMPLE:

When $k=2$, for example, we have a distribution on

$$
\begin{aligned}
& \{(01),(10),(11)\} \text {, } \\
& \text { as }\{1 / 4, I / 4, I / 2\} \text {, }
\end{aligned}
$$

meaning that

$$
\begin{gathered}
\operatorname{Prob}(0 \mathrm{I})=\operatorname{Prob}(10)=1 / 4 \text { and } \\
\operatorname{Prob}(11)=1 / 2
\end{gathered}
$$

Encoding

- To construct a coded output symbol,

1. sample independently from \mathcal{D} and
2. add input symbols corresponding to the sampled output

- Repeat this endlessly (rateless)

$$
\begin{gathered}
\begin{array}{c}
\text { Example } \\
k=2
\end{array} \\
\begin{array}{c}
\text { Endless sequence of } \\
\text { encoded symbols }
\end{array} \\
\begin{array}{c}
\text { Sequence of } \\
\text { samples from } \mathcal{D}
\end{array} \\
x_{1}+x_{2} \\
(\mathrm{II})
\end{gathered}
$$

Encoding (alternative implementation)

Example
$k=2$

Endless encoded. symbols

Sequence of samples from the distribution

2

Choose uniform-randomly from the symbols according to the sample

The randomness is moved from the distribution \mathcal{D} to here

Example for $k=4$

Example for $k=4$ (alternative way)

Key issues on design and implementation

Key 2 (implementation issue - tricky)

- Each tx-and-rx coded symbol must contain an indication of how it was generated, otherwise the received symbol is useless
- In practice, this can be done by indicating a seed for the random number generators shared by tx and rx

Encoded symbols

Key I(design issue)
how to design \mathcal{D} ?

Decoding is to solve some simultaneous linear equations over \mathbb{F}_{2}

$$
\left.\begin{array}{rl}
x_{1}+x_{2} & =c_{1} \\
x_{1} & =c_{2} \\
x_{2} & =c_{3} \\
x_{1}+x_{2} & =c_{4}
\end{array}\right] \quad\left[\quad \begin{array}{l}
\text { Determine } \\
x_{1}=? \\
x_{2}=?
\end{array}\right.
$$

- Best known algorithm?
- Gauss Elimination Algorithm (200 years old) in quadratic time
- Here, we have to do much faster.

Performance Measures

- Encoding cost
- The expected encoding cost of a fountain code with parameters (\mathcal{D}, k) is the expectation of the weight function under \mathcal{D}

$$
E_{\mathcal{D}}[\operatorname{weight}(x)]
$$

- This corresponds to the expected per-symbol cost of encoding
- The best encoding cost is constant $O(1)$
- Decoding cost
- The expected decoding cost of a fountain code with parameters (\mathcal{D}, k) using a specific decoding algorithm is the expected number of arithmetic operations (i.e., additions over \mathbb{F}_{2}) that the algorithm uses to decode the source symbols
- The best decoding cost is linear in k, i.e., $O(k)$
- Overhead (reception overhead)
- ε is the overhead if decoding can be done from any set of $k(1+\varepsilon)$ output symbols with high probability

Some History

- Fountain codes were stipulated by Byers et al in 1998, and their applications discussed. A construction was, however, not given.

Byers, J.W., Luby, M., Mitzenmacher, M., \& Rege, A. (1998). A digital fountain approach to reliable distribution of bulk data. ACM SIGCOMM Computer Communication Review, 28, 56-67.

- First construction of efficient Fountain codes was given by Luby in 1998 (published in 2002).

Luby, M. (2002). Lt codes. In Annual symposium on foundations of computer science, 2002 (pp. 27I-280).

- Raptor codes were invented motivated by the objective of improving the encoding and decoding complexity (published in 2006).

[^0]

John W. Byers
Professor of
Computer Science and
Fellow of the Hariri Institute

BOSTON

 UNIVERSITYE-mail: byers@cs.bu .edu
Office: MCS 295B
Spring 2017 Office hours:
Tues 1:30-2:30 PM (by appointment), Wed 2-4 PM

Michael Luby Computer scientist

Michael George Luby is a mathematician and computer scientist, VP Technology at Qualcomm and former co-founder and Chief Technology Officer of Digital Fountain. Wikipedia

Doctoral advisor: Richard M. Karp
Books: Pseudorandomness and Cryptographic Applications, more
Education: University of California, Berkeley (1983), Massachusetts Institute of Technology (1975)
Awards: IEEE Eric E. Sumner award

APPROXIMATIONS OF DIGITAL FOUNTAIN

REED-SOLOMON CODES TORNADO CODES
LT CODES
RAPTOR CODES
Not rateless = With "rate"
Rateless approach in theory, but there is a "rate" in practice (overhead)

Reed-Solomon Codes

RS codes (over BEC) is the first example of "fountain-like" codes

- Optimal overhead
- A message of k symbols can be recovered from any $n=k+r$ encoding symbols
- Dense systems of linear equations
- Poor encoding cost (linear in k)
- Poor decoding cost (quadratic in k)
- Limitation on the number of distinct encoding symbols
- The field size gives a limitation on the number of distinct encoding symbols that can be generated
- Larger fields introduce nontrivial overhead for the resulting field arithmetic operations

Tornado Codes [1997]

- Sparse systems of equations
- Large encoding/decoding cost for RS codes arises from the dense system of linear equations
- Fast encoding and decoding (linear in \boldsymbol{k})
- Suboptimal overhead
- The price we pay for much faster encoding and decoding is that k packets no longer suffice to reconstruct the source data
- Challenges for Tornado Codes
- Designing the proper structure for the system of equations so that
- The number of additional packets is small
- The encoding/decoding costs are small

Tornado Codes

- Random erasure channel model (BEC)
- Each bit is lost independently with a fixed (given) probability μ
- We know the positions of the lost bits
- We want a binary linear block code with rate $(\mathbf{1}-\boldsymbol{p})$ that can correct $(\mathbf{1}-\boldsymbol{\varepsilon}) \boldsymbol{p}$ fraction of the erasures
* This is a binary $[\boldsymbol{n},(\mathbf{1}-\boldsymbol{p}) \boldsymbol{n},(\mathbf{1}-\boldsymbol{\varepsilon}) \boldsymbol{p} \boldsymbol{n}+\mathbf{1}]$ code
- We will use \boldsymbol{d}-regular bipartite graphs with k nodes on the left and $p k$ on the right

$$
k=\# \text { of message bits }
$$

Tornado Codes: Encoding

- Linear time encoding

Computes the sum mod 2

An example of expander graphs

Tornado Codes: Decoding

- Assume that all the check bits are intact (NOT in ERROR)
- Find a check bit c_{i} such that only one of its neighbors is erased - an unshared neighbor
- Fix the erased symbol, and repeat

Tornado Codes: Decoding

- We need to always find such a check bit with the unshared-neighbors property
- Consider the set of corrupted message bits and their neighbors
- At least one check bit has an unshared neighbor
- Can we always find unshared neighbors?

Tornado Codes: Decoding

- What if check bits are erased?
- Use another bipartite graph to construct another level of check bits for the check bits
- Final level is encoded using RS or some other (linear block) code

$$
\boldsymbol{P}^{m+1} k \quad p^{m+2} k /(1-p)
$$

Total \# of check bits:

$$
\begin{gathered}
\sum_{i=1}^{m+1} p^{i} k+\frac{p^{m+2} k}{1-p}=\frac{k p}{1-p} \\
n=k+\frac{k p}{1-p}=\frac{k}{1-p}
\end{gathered}
$$

Codeword length:

Rate:

$$
\frac{k}{n}=(1-p)
$$

Tornado Codes - summary

- Optimal degree sequences
- The decoding algorithm is equivalent to finding a node of degree one on the right, and then removing it, its neighbor, and all edges adjacent to the neighbor from the sub-graph
* Repeat this until no nodes of degree one are available at every step of decoding
* The optimal degree distributions are designed in such a way that there are a small number of degree one right nodes available at every time step
- Better approximation to digital fountains than Reed-Solomon codes
- Linear time encoding/decoding
- Still suffer from a powerful drawback in that the code is not rateless

LT Codes [2002]

- The first practical realization of rateless codes
- Advantage over Tornado codes
- With Tornado codes, even after designing the degree distribution, some care must be taken to design the actual graph used as well
- With LT codes, there is no explicit graph to optimize
- Near-ideal digital fountain
- Encoding can be done on the fly in time proportional to $\ln k$
- Decoding can be done in time proportional to $k \ln k$

LT Codes - encoding/decoding

Data symbols, Input symbols, Information symbols, Source symbols

Encoding symbols,

Each encoding symbol is an XOR of some data symbols.

LT Codes - the best one could hope for

* Reduce the average degree to a constant, and the decoding time to $O(k)$

This cannot be done in the strict LT framework

- Simply for every message node to have at least one neighbor when there are $O(k)$ encoding symbols, the average degree must be at least $\Omega(\ln k)$
- However, using pre-coding, the average degree can be reduced to a constant
- This is the "Raptor code"

Raptor Codes [2006]

- Extend the idea of LT codes one important step farther
- First pre-code the message M by encoding it with a fixed erasure code
- Now treat the encoded version \mathbf{M}^{\prime} as the message, so that encoding symbols are the XOR of packets of M^{\prime}, in a manner similar to LT codes
- Now, we just need to recover a constant fraction of the packets of M^{\prime}
- The bound on the average degree $\Omega(\ln k)$ no longer applies
- For any constant $\varepsilon>0$ and sufficiently large k, the message M can be decoded after receiving only $(1+\varepsilon) \boldsymbol{k}$ packets with high probability, with the degree of each encoding symbol being $O\left(\ln \left(\frac{1}{\varepsilon}\right)\right)$ and the total decoding time being $O\left(k \ln \left(\frac{1}{\varepsilon}\right)\right)$

LT CODES

ENCODING
 DECODING
 DEGREE DISTRIBUTIONS

PRELIMINARY (BALLS-IN-BINS EXERCISE) IDEAL SOLITON DISTRIBUTION ROBUST SOLITON DISTRIBUTION
M. Luby, "LT codes," presented at the Proc. IEEE Foundations of Computer Science (FOCS), 2002.

Encoding

- An $(\boldsymbol{k}, \boldsymbol{\rho}(\boldsymbol{x}))$ LT code
- The number of input symbols is \boldsymbol{k}
- The degree sequence is $\left(\rho_{1}, \rho_{2}, \ldots, \rho_{k}\right)$, where $\boldsymbol{\rho}(\boldsymbol{x})=\sum_{i=1}^{k} \boldsymbol{\rho}_{i} \boldsymbol{x}^{i}$
- Any number of encoding symbols can be independently generated from k information symbols by the following encoding process:

1. Determine the degree \boldsymbol{d} of an encoding symbol. The degree is chosen at random from a given degree distribution $\boldsymbol{\rho}(\boldsymbol{x})$.
2. Choose d distinct information symbols uniformly at random. They will be neighbors of the encoding symbol.
3. Assign the XOR of the chosen d information symbols to the encoding symbol

- The degree distribution $\boldsymbol{\rho}(\boldsymbol{x})$ determines the performance of LT codes, such as the number of encoding symbols for successful decoding (overhead).

Encoding

* The receiver must know the encoding graph \mathbf{G} that is used by the sender
- Encoding graph G
degree distribution $\rho(x)$

d	ρ_{d}
1	0.5
2	0.4
3	0.1
4	0
5	0
$6=k$	0

, - The degree d of an encoding symbol is determined by the degree distribution $\rho(x)$

	2	2	2	1	1	2	1	1	3	1

-Every vector of weight d is chosen with probability $\frac{\rho_{d}}{\binom{k}{d}}$

Decoding

I will go through some examples first, and then, summarize the process

Decoding

= no values are assigned

Find all the encoding symbols of degree 1.
Example I

$$
\text { Here, there are } 3 \text { such symbols. }
$$ "Release" them to "cover" the info symbols.

Decoding

Example I

These three information symbols are now "covered"
($=$ the decoded values are determined)
Then, these three information symbols (covered but not yet processed) are put into the set, called "the Ripple"

Decoding

Example I

Any one information symbol in a Ripple
is chosen to be "processed"
[All the neighbor encoding symbols are updated and the corresponding edges are removed.
The processed info symbol is removed from the Ripple.

Decoding

Example I

1 information symbol in the Ripple is processed.
In the Ripple, 2 information symbols are remained

Decoding

Example I

No encoding symbol has degree one

Decoding

Example I

Any one information symbol in the Ripple is AGAIN chosen to be processed

Decoding

Example I

The only one remaining information symbol in the Ripple is processed

Decoding

Example I

Release the encoding symbol of degree 1 to cover the neighbor symbol

Decoding

Example I

One more information symbol is covered (by the value $e+d$)
Then, this information symbol (covered but not yet processed) is put into the Ripple

Decoding

Example I

1 information symbol in a Ripple is chosen to be processed

Decoding

Example I

1 information symbol in a Ripple is processed In the Ripple, 1 information symbol is remained

Decoding

Example I

Release the encoding symbol of degree 1

Decoding

Example I

One more information symbol is covered
Then, this information symbol is put into the Ripple

Decoding

Example I

1 information symbol in a Ripple is chosen to be processed

Decoding

Example I

1 information symbol in a Ripple is processed In the Ripple, 1 information symbol is remained

We must have that

$$
g+e=a+c
$$

Otherwise, decoding fails!!
This must always be true since we assume BEC

Decoding

Example I

Release encoding symbols of degree 1

Decoding

Example I

All information symbols are covered!
One condition for the end of decoding

Success!!

Decoding Example of Failure

Example 2

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

No encoding symbols of degree one \& Ripple is empty

since some of the information symbols are still uncovered.

Decoding

Example 3

Decoding - LT Process

(All information symbols are initially uncovered and a ripple is empty)

1. (Release)

- Release all the degree-1 encoding symbols.
- If no encoding symbol has degree-1, then go to Step 3.

2. (Cover)

- The released encoding symbols cover their unique neighbor information symbols, and these covered symbols are put into a set called "ripple."
- If all the information symbols are covered, decoding succeeds.

3. (Process)

- If ripple is empty, (with some uncovered symbols) the decoding fails.
- Otherwise, any one information symbol in the ripple is chosen (at random) to be processed: the edges connecting the information symbol to its neighbor encoding symbols are removed and the value of each encoding symbol is updated.
- The decoding process continues by iterating the above three steps

Designing The Degree Distribution - code design problem

- The desired property
- The probability of success recovery is as high as possible
- The number of required encoding symbols for successful decoding is kept small
- The degree distribution is a critical part of the design
- Many packets must have low degree
- The decoding process can get started and keep going
- The total number of operations involved in the encoding and decoding is kept small
- Some packets must have high degree
- In order to ensure that there are not some source packets connected to no one
- Therefore, the degree distribution of encoding symbols needs to be elaborately designed so as to balance between the above trade-off

Designing The Degree Distribution

- The All-At-Once distribution (Example)
- $\rho_{1}=1$ and $\rho_{d}=0$ for $d=2,3, \ldots$
- Encoding symbols have one neighbor each
- Any received encoding symbol can immediately recover the associated information symbol
* Same as the Data Carousel

Balls-In-Bins Exercise

Imagine that we throw n balls independently at random into k bins, where $\boldsymbol{k}(\cong \boldsymbol{n})$ is a large number, say, 1,000 or 10,000 or more. What is the fraction of bins without any ball ?

- The probability that any bin is empty is $\left(1-\frac{1}{k}\right)^{n} \cong e^{-n / k} \cong e^{-1}$
- The number of empty bins will be k / e
- So, the fraction of bins without any ball becomes again $1 / e$

Define a random variable $X_{i}=1$ if i-th bin is empty and $X_{i}=0$ otherwise. Then,

$$
P\left[X_{i}=1\right]=1 / e \text { and } P\left[X_{i}=0\right]=1-1 / e
$$

Therefore,

$$
E\left[X_{i}\right]=1 / e
$$

The number Y of empty bins is now given by

$$
Y=\sum X_{i}
$$

Its expectation becomes

$$
E[Y]=\sum E\left[X_{i}\right]=\sum 1 / e=k / e
$$

Balls-In-Bins Exercise

If we throw three times as many balls as there are bins, is it likely that any bins will be empty?

- If $n=3 k$, the empty fraction drops to $1 / e^{3}$, about 5%

In order for the probability that all \boldsymbol{k} bins have at least one ball to be $\mathbf{1} \boldsymbol{-} \boldsymbol{\delta}$, we require at least $\boldsymbol{n}=\boldsymbol{k} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{k}}{\delta}\right)$ balls

- For general n, the expected number of empty bins is $k e^{-\frac{n}{k}}$
- $k e^{-\frac{n}{k}}<\delta$ only if $n>k \ln (k / \delta)$

Conclusion:

In order for almost every \boldsymbol{k} bins to be filled with at least one ball we have to throw at least $\boldsymbol{k} \ln (\boldsymbol{k})$ balls

Balls-In-Bins Exercise \Rightarrow Degree Distribution

- The classical process of throwing balls into bins can be viewed as the LT process
- Balls: edges
- Bins: source packets (information symbols)
- In order for decoding to be successful, every bin(source symbol) must have (necessarily) at least one ball(edge in the graph) in it. Otherwise, decoding will not be started.
- The special case where all the encoding symbols have degree one:
, This has the 'all-at-once' distribution: $\rho(1)=1$ (every symbol has degree 1)
If every encoding symbol has degree 1 , then the receiver must have at least $\boldsymbol{k} \ln \boldsymbol{k}$ encoding symbols
(necessary condition for the start of the decoding possible) Less than this much receptions will definitely fail to recover \boldsymbol{k} source symbols

Balls-In-Bins Exercise \Rightarrow Degree Distribution

- The classical process of throwing balls into bins can be viewed as the LT process
- Balls: edges
- Bins: source packets (information symbols)
- In order for decoding to be successful, every bin(source symbol) must have (necessarily) at least one ball(edge in the graph) in it. Otherwise, decoding will not be started.

Conversely, (one can prove that)

For the successful recovery using exactly \boldsymbol{k} encoding symbols, it is required that
every encoding symbol must have degree at least $\ln \boldsymbol{k}$.

Ideal Soliton Distribution

- Ideally, to avoid redundancy, we would like the received graph to have the property that just one output symbol has degree one at each iteration
- At each iteration, when this output node is released, the degrees in the graph are reduced in such a way that one new degree-one output node appears
- This Ideal Soliton distribution displays ideal behavior in terms of the expected number of encoding symbols needed to recover the data, in contrast to the All-AtOnce distribution
- In expectation, this ideal behavior is achieved by the ideal soliton distribution

$$
\left\{\begin{array}{c}
\rho(1)=\frac{1}{k} \\
\rho(i)=\frac{1}{i(i-1)}, \quad i=2, \ldots, k
\end{array}\right.
$$

Ideal Soliton Distribution

- In practice, the Ideal Soliton Distribution shows poor performance
- The main problem with Ideal Soliton Distribution is that the expected ripple size is too small ($=1$)
- Any variation in the ripple size is likely to make the ripple disappear and then the overall process fails
- The Robust Soliton Distribution ensures that the expected ripple size is large enough at each point in the process so that it never disappears completely in high probability
- On the other hand, in order to minimize the overall number of encoding symbols used, it is important to minimize the expected ripple size so that not too many released encoding symbols redundantly cover input symbols already in the ripple

Robust Soliton Distribution

- The Robust Soliton distribution

where β is the normalization constant chosen to ensure that μ is a probability distribution, and

$$
\tau_{d}=\left\{\begin{array}{ccc}
\frac{R / \boldsymbol{k}}{\boldsymbol{d}} & \text { for } \boldsymbol{d}=\mathbf{1}, \ldots, \frac{\boldsymbol{k}}{\boldsymbol{R}}-\mathbf{1} & \text { Diminishing marginals } \\
\left(\frac{\boldsymbol{R}}{\boldsymbol{k}}\right) \boldsymbol{\operatorname { l n } (\frac { R } { \delta })} & \text { for } \boldsymbol{d}=\frac{\boldsymbol{k}}{\boldsymbol{R}} & \text { (a spike!!) } \\
0 & \text { for } d=\frac{k}{R}+1, \ldots, k &
\end{array}\right.
$$

- It is designed to ensure that the expected number of degree-one output symbols is about $R \equiv c \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{k}}{\boldsymbol{\delta}}\right) \sqrt{\boldsymbol{k}} \gg \mathbf{1}$ (rather than 1 in ideal soliton), throughout the decoding process
- The parameter $\boldsymbol{\delta}$ is a bound on the probability that the decoding fails to run to completion
b The parameter \boldsymbol{c} is a constant of order 1

Ideal Soliton Distribution and $\tau(d)$ for the case $k=10000, c=0.2, \delta=0.05$

Robust Soliton Distribution for the case $k=10000, c=0.2, \delta=0.05$

Average Degree of an Encoding Symbol (for RSD)

- The average degree of an encoding symbol is

$$
\begin{aligned}
D & =\frac{\sum_{i} i(\rho(i)+\tau(i))}{\beta} \\
& \leq \sum_{i} i(\rho(i)+\tau(i)) \\
& =\sum_{i=2}^{k+1} \frac{1}{i-1}+\sum_{i=1}^{\frac{k}{R}-1} \frac{R}{k}+\ln \frac{R}{\delta}
\end{aligned}
$$

Sum of harmonic series

$$
\approx \ln (k)
$$

Heavy burden on encoding/decoding complexity!!! (though it guarantees good performance)

RAPTOR CODES

A. Shokrollahi,"Raptor codes," IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 255I-2567, Jun. 2006.

Raptor Codes

- For LT codes, the encoding and decoding costs scale as $\boldsymbol{k} \boldsymbol{\operatorname { l n }} \boldsymbol{k}$
- We want linear time encoding and decoding!
- The code graph should have a lower average degree
- (Example) For the use of an LT code with average degree $\bar{d} \cong 3$
- A fraction of the input symbols will not be connected to the graph and so will not be recovered
- From balls-in-bins exercise, the expected fraction of not recovered is δ
$\equiv e^{-\bar{d}}$, which for $\bar{d}=3$ is 5% (too much!!!)
- Shokrollahi’s trick in Raptor codes
- LT code can recover a $(1-\delta)$-fraction
- Pre-code can recover all the original symbols from any $(1-\delta)$-fraction

Raptor Codes

$\square \square \square$ Output symbols

Raptor Codes

- In general, Raptor code can be defined as a two-stage process
- An (m, k) linear block code C, called pre-code, as the outer code
> An LT code specified by a node degree distribution $\Omega_{D}(x)$ as the inner code
- Encoding cost is the sum of the encoding costs of the individual codes
- Decoding cost is the sum of the individual decoding costs
- Two additional performance measures
- Space
- Overhead

$$
\begin{array}{|l|}
\hline \text { Space }=\frac{m}{k}=\frac{8}{6} \\
\hline \text { Overhead } \epsilon=\frac{n-k}{k}=\frac{3}{6} \\
\hline
\end{array}
$$

\square

\square

$$
k=6
$$

Pre Code

LT Code
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc=9$

Raptor Codes

- Two extreme example
- LT codes (without pre-code)
, No pre-codes: space is close to 1
- Overhead is close to 0
- Time: logarithmic encoding and decoding cost
- Pre-Code Only codes (without LT code)
> Pre-codes with $\Omega(x)=x$: space is away from 1
- Overhead is away from 0
- Design Raptor codes between these two extremes
- Constant encoding and decoding cost
- Space is close to 1
- Overhead is close to 0
, These codes can be designed by choosing an appropriate output distribution $\Omega(x)$ and an appropriate pre-code C

Raptor Codes

- A Raptor code that will asymptotically have constant encoding and decoding costs, and minimum overhead and space when
- The pre-code C has rate $R=\frac{1+\epsilon / 2}{1+\epsilon}$ and is able to decode up to $(1-R) / 2$ fraction of erasures

$$
\epsilon=0.1 \rightarrow R=\frac{105}{110} \quad(1-105 / 110) / 2=5 / 220
$$

- This is significantly less powerful than a capacity-achieving code, which can decode up to ($1-R$) fraction of erasures
- $\Omega_{D}(x)$ is close to an ideal soliton distribution but with some weight for degree one and capped to a maximum degree D

$$
\Omega_{D}(x)=\frac{1}{\mu+1}\left(\mu x+\sum_{i=2}^{D} \frac{x^{i}}{i(i-1)}+\frac{x^{D+1}}{D}\right)
$$

$$
D=4.4 / 0.1=44
$$

- Setting $D=[4(1+\epsilon) / \epsilon]$ and $\mu=\left(\frac{\epsilon}{2}\right)+\left(\frac{\epsilon}{2}\right)^{2}$
- This code has space consumption $1 / R,=1 \mid 0 / 105$ overhead ϵ and $\quad \epsilon=0.1$ encoding/decoding cost of $O\left(\ln \left(\frac{1}{\epsilon}\right)\right) \quad O(\ln (10))$

A variety of codes can be used as the pre-code

- LDPC codes - Low density gives a low complexity

A variety of codes can be used as the pre-code

- Repeat Accumulate codes

- Add redundant for check point to recover but don’t add too large overhead
- More robust error correcting codes

A variety of codes can be used as the pre-code

- Concatenated Pre-codes (3GPP)

Summary

- With many good properties, fountain codes have been applied to a variety of engineering applications, such as hybrid ARQ, scalable video streaming, and sensor networks
- Raptor codes have been adopted in several standards
- 3GPP, where it is used for a mobile cellular wireless broadcast and multicast
- DVB-H standards, where it is used for IP datacast to handheld devices
- The characteristics of various codes that are designed for the digital fountain ideal

	Tornado	LT	Raptor
Rateless	No	Yes	Yes
Overhead	ϵ	$\epsilon \rightarrow 0$	$\epsilon \rightarrow 0$
Encoding complexity per symbol	$O(\epsilon \ln (1 / \epsilon))$	$O(\ln (k))$	$O(1)$
Decoding complexity per symbol	$O(\epsilon \ln (1 / \epsilon))$	$O(\ln (k))$	$O(1)$
Space per symbol	$O(1)$	$O(1)$	$O(1)$, with a larger constant.

REFERENCES

> J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, "A digital fountain approach to reliable distribution of bulk data," SIGCOMM Comput. Commun. Rev., vol. 28, pp. 56-67, 1998.
> J. W. Byers, M. Luby, and M. Mitzenmacher, "A digital fountain approach to asynchronous reliable multicast," Selected Areas in Communications, IEEE Journal on, vol. 20, pp. 1528-1540, 2002.
> M. Mitzenmacher, "Digital fountains: a survey and look forward," in Information Theory Workshop, 2004. IEEE, 2004, pp. 271-276.
$>$ D. J. C. MacKay, "Fountain codes," Communications, IEE Proceedings-, vol. 152, pp. 1062-1068, 2005.
> M. Luby, M. Mitzenmacher, and A. Shokrollahi, "Analysis of random processes via And-Or tree evaluation," presented at the Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, San Francisco, California, United States, 1998.
> M. Luby, "LT codes," in Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, 2002, pp. 271-280.

- A. Shokrollahi, "Raptor codes," in Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, 2004, p. 36.
- A. Shokrollahi, "Raptor codes," Information Theory, IEEE Transactions on, vol. 52, pp. 2551-2567, 2006.
- O. Etesami, M. Molkaraie, and A. Shokrollahi, "Raptor codes on symmetric channels," in Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, 2004, p. 38.
- R. Palanki and J. S. Yedidia, "Rateless codes on noisy channels," in Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, 2004, p. 37.
- O. Etesami and A. Shokrollahi, "Raptor codes on binary memoryless symmetric channels," Information Theory, IEEE Transactions on, vol. 52, pp. 2033-2051, 2006.
N. Rahnavard and F. Fekri, "Finite-length unequal error protection rateless codes: design and analysis," in Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE, 2005, p. 5 pp.
N. Rahnavard, B. N. Vellambi, and F. Fekri, "Rateless Codes With Unequal Error Protection Property," Information Theory, IEEE Transactions on, vol. 53, pp. 1521-1532, 2007.
> M. C. O. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, "Sliding-Window Digital Fountain Codes for Streaming of Multimedia Contents," in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, 2007, pp. 3467-3470.
> D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki, "Expanding window fountain codes for unequal error protection," Communications, IEEE Transactions on, vol. 57, pp. 2510-2516, 2009.
> C. Yu, S. Blostein, and C. Wai-Yip, "Unequal error protection rateless coding design for multimedia multicasting," in Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on, 2010, pp. 2438-2442.
> W. Nan and Z. Zhiji, "The impact of application layer Raptor FEC on the coverage of MBMS," Radio and Wireless Symposium, 2008 IEEE, pp. 223-226, 22-24 Jan. 20082008.
> C. Berger, Z. Shengli, W. Yonggang, P. Willett, and K. Pattipati, "Optimizing Joint Erasure- and ErrorCorrection Coding for Wireless Packet Transmissions," Wireless Communications, IEEE Transactions on, vol. 7, pp. 4586-4595, 2008.
> C. Yu and S. D. Blostein, "Cross-layer optimization of rateless coding over wireless fading channels," in Communications (QBSC), 2010 25th Biennial Symposium on, 2010, pp. 144-149.
> S. Puducheri, J. Kliewer, and T. E. Fuja, "Distributed LT Codes," in Information Theory, 2006 IEEE International Symposium on, 2006, pp. 987-991.
> S. Puducheri, J. Kliewer, and T. E. Fuja, "The Design and Performance of Distributed LT Codes," Information Theory, IEEE Transactions on, vol. 53, pp. 3740-3754, 2007.
$>$ D. Sejdinovic, R. J. Piechocki, and A. Doufexi, "AND-OR tree analysis of distributed LT codes," in Networking and Information Theory, 2009. ITW 2009. IEEE Information Theory Workshop on, 2009, pp. 261-265.
> M. L. Champel, K. Huguenin, A. M. Kermarrec, and N. Le Scouarnec, "LT Network Codes," in Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on, 2010, pp. 536-546.
> D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 32, no. 18, pp. 1645-1646, March 1996, reprinted Electron. Lett, vol. 33(6), pp. 457458, March 1997.
> M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, "Practical loss-resilient codes," in Proc. $29^{\text {th }}$ Annual ACM Symposium on Theory of Computing, 1997, pp. 150-149.
> P. Dohyung and C. Sae-Young, "Performance \& complexity tradeoffs of rateless codes," in Information Theory, 2008. ISIT 2008. IEEE International Symposium on, 2008, pp. 2056-2060.

Tutorial review

Locally Repairable Codes

Codes for Distributed Storage Systems

Introduction to distributive storage codes

Information Era

- Large-Scale Storage System

- Warehouse-scale data center
- Thousands of servers, Petabytes (or Exabytes) of disk space
* Peta: 10^{15}

Exa: 10^{18}

Google

Data Center
http://www.google.com/about/datacenters/

The Data Explosion

- We generate a huge amount of digital data
- We expect it to be stored reliably and accessible anytime, anywhere for free
- Total data in the cloud is of the order of few hundred exabytes
- Even storing raw data costs hundreds of millions
- Hardware is no longer cheap
- Currently, data centers consume up to 3 percent of all global electricity production while producing 200 million metric tons of carbon dioxide

A Trace of Node Failures

- The number of failed nodes over a single month in a 3000 node production cluster of

Facebook

- More than 20 nodes fail daily on average

Discrete coding channel model

- A discrete coding channel is a model of communication channel including digital modem, $\mathrm{rx}(\mathrm{tx})$ antenna and analog physical (RF/CABLE) channel.
- It is characterized by (I) input alphabet (2) output alphabet, and (3) transition probabilities between these two.
- Famous examples are BSC, BEC, etc.

BEC(p)

BSC(p)

Disk failure is best modelled by BEC

Typical model

Reliable Data Storage

- Goal: Tolerate one disk failure
- Solution:
- Duplication
- 2x overhead

Channel model

Erasure only channel without errors

- Quick recovery
- Simple XOR - RAID 5
- Treat each disk as a bit vector
> 1.2x overhead
, Slower recovery

Reliable Data Storage

- Goal: Tolerate two disk failures
- Solution:
- Triplication
- 3x overhead
- Quick recovery
- $(6,4)$ Reed Solomon Code - RAID 6
- 1.5x overhead
, Slower recovery
- Need a larger field: each disk is a byte-vector

Channel model

Erasure only channel without errors

$$
d=3
$$

1-error correcting
or
2-erasure correcting

Limitations of Reed-Solomon Codes

- Traditional erasure-correcting codes are optimized for regeneration of the original message
- But not for regeneration of individual lost parts
- Example: $(14,10)$ RS code with $\mathrm{d}=14-10+1=5$

Reconstruct the whole file

Limitations of Reed-Solomon Codes

Do we really have to reconstruct the whole message in order to recover a single node failure?

Good Repair Process

- How many nodes(disks) have to be accessed and how much data from each node must be downloaded for the repair?
- Metric: Total bandwidth during the repair
- Regenerating Codes [Dimakis-Godfrey-Wu-Wainwright-Ramchandran `10]
- Model allows connecting many disks
- How many nodes(disks) have to be accessed?
- Metric: Total number of disks participating in the repair
- Locally Repairable Codes (LRC) [Gopalan-Huang-Simitci-Yekhanin `12]

Locally Repairable Codes

LRC Example

- Local reconstruction for x_{1}

$$
\mathrm{x}_{1}=\mathrm{p}_{\mathrm{x}}-\left(\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}\right)
$$

Locality

[Chen-Huang-Li`07, Oggier-Datta` I I, Gopalan-Simitci-Huang-Yekhanin` 12,

 Papailiopoulos-Luo-Dimakis-Huang-Li' ${ }^{2}$ 2]- Let \mathcal{C} be an $(n, k)_{q}$ code of length n, dimension k over a finite field \mathbb{F}_{q}
- The locality of the i-th coordinate of \mathcal{C} is r if the value of the i-th symbol of a codeword of \mathcal{C} is a function of r other coordinates and no such a set of coordinates of cardinality less than r exists
- The set of such r coordinates that can repair the i-th symbol is called a repair set
- The locality of the code \mathcal{C} is r if the symbol locality of every symbol in a codeword of \mathcal{C} is at most r

An (n, k) code \mathcal{C} with locality $r(\ll \boldsymbol{k})$ is defined as an (n, k, r) locally repairable code

Locality

[Chen-Huang-Li`07, Oggier-Datta` I I, Gopalan-Huang-Simitci-Yekhanin`12, Papailiopoulos-Luo-Dimakis-Huang-Li' 12]

- A coordinate in a linear code has locality r if it can be expressed as a linear combination of r other coordinates
- If an i-th symbol c_{i} is lost, it can be recovered by reading just r other symbols
- Information locality r : all information symbols have locality r
- All-symbol locality r : all symbols have locality r
- Decouples typical decoding complexity r from length n
- r reads for single failures, degraded reads
- No guarantees for more worst-case failures

Parameters of LRCs [Gopalan-Huang-Simitci-Yekhanin`l2]

- Let \mathcal{C} be an (n, k, r) LRC
- Assume that $r \mid k$ and $r+1 \mid n$
- The rate is bounded by

$$
\frac{k}{n} \leq \frac{r}{r+1}
$$

Proof:

There exist at most $\frac{n r}{r+1}$ coordinates that determine the exact codeword

$$
\Leftrightarrow k \leq \frac{n r}{r+1}
$$

For example,

achieves the bound since $\mathrm{k} / \mathrm{n}=4 / 5$ and $\mathrm{r}=4$

Parameters of LRCs

[Gopalan-Huang-Simitci-Yekhanin`l2]

- Let \mathcal{C} be an (n, k, r) LRC
* Assume that $r \mid k$ and $r+1 \mid n$
- The minimum distance is bounded by

$$
d \leq n-\boldsymbol{k}-\left\lceil\frac{k}{r}\right\rceil+2
$$

Remarks:

- Generalization of the singleton bound $(r=k)$

$$
d \leq n-k+1
$$

- An optimal ($\boldsymbol{n}, \boldsymbol{k}, \boldsymbol{r}$) LRC achieves the bound with equality

Optimal LRCs - Trivial (extreme) cases

- $\boldsymbol{r}=\boldsymbol{k}$
- $d \leq n-k+1$
- An (n, k) RS code is an $(n, k, r=k)$ optimal LRC
, $|\mathbb{F}|=O(n)$
- $r=1$

$$
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2
$$

> $d \leq 2\left(\frac{n}{2}-k+1\right)$
, Duplication of an $(n / 2, k)$ RS code is an $(n, k, r=1)$ optimal LRC
, $|\mathbb{F}|=O(n)$

- What happens for $1<r<k$?

Availability

- A symbol has availability t if it can be read in parallel by $t+1$ disjoint groups of symbols
- These t reads have locality r if they involve up to r symbols each
- Replication provides high availability for hot data
- Example: 3x replication
- Each symbol can be read in parallel $t+1=3$ times.
- Availability $t=2$.
- Locality $r=1$.

Availability for Hot Data

" "Hot data" is accessed simultaneously by a very large number of users

Availability

- Goal
- A code with high availability and small storage overhead
- Solution
- LRC code with multiple disjoint recovery sets
- This is a code with availability

Locality and Availability

- $(14,10)$ RS code
- Information locality 5
- Availability for m_{1}

Locality and Availability

- Block m_{1} can be read by 1 systematic read and 2 repair reads simultaneously

Some constructions for LRC

Local Parity

- An (n, k, r) LRC when $r \mid k$
* Single parity check code is an LRC with $\boldsymbol{d}=\mathbf{2}$
, $n=k+\frac{k}{r}$ and $r=2$ (with k even)

- The minimum distance bound for an (n, k, r) LRC

$$
d \leq\left(k+\frac{k}{r}\right)-k-\frac{k}{r}+2=2
$$

- This is an optimal LRC for given n and k

Optimal LRC Example

3 repair groups

Single parity check code is an LRC with $\boldsymbol{d}=\mathbf{2}$
$n=k+\frac{k}{r}=12+3=15$ and $r=4$
The minimum distance bound for an (n, k, r) LRC

$$
d \leq\left(k+\frac{k}{r}\right)-k-\frac{k}{r}+2=2
$$

Single parity check code is optimal (when $r \mid k$)

- Take r info symbols at a time and add a single parity check for them
- Repeat this for all info symbols of size r times some number, say, m.
- Length $\boldsymbol{n}=\boldsymbol{m}(\boldsymbol{r}+\mathbf{1})$
- Dimension $\boldsymbol{k}=\boldsymbol{r m}$ so $(k / r=m)$
- Minimum distance $\boldsymbol{d}=\mathbf{2}$ and RHS=($n-k)-\frac{k}{r}+2=m-m+2=2$
\rightarrow optimal
- Coderate $k / n=r m / m(r+1)=r /(r+1)$
\rightarrow optimal in the sense of coderate

Global Parity and Local Parity

- An (n, k, r) LRC when $r+1 \mid n$
- ($\left.n^{\prime}, k\right)$ MDS code, and then, use ($r+1, r$) single parity check code (for every r of them)
, $n=n^{\prime} \frac{(r+1)}{r}$ and $n^{\prime}-k+1 \leq d \leq n^{\prime}-k+2$
- The minimum distance bound for an (n, k, r) LRC

$$
d<\left(n^{\prime} \frac{r+1}{r}\right)-k-\left\lceil\frac{k}{r}\right\rceil+2
$$

* This is not an optimal LRC
$(10,7)$ MDS

Pyramid Code - Information Locality
 [Chen-Huang-Li’07]

- Information Locality
- Take an $(k+d-1, k)_{q}$ Reed-Solomon code

- Split the first parity so that each cover $\mathbf{1 / 2}$ of info symbols
, This gives $n=(k+d-1)+\frac{k}{r}-1=k\left(1+\frac{1}{r}\right)+d-2$

Information Locality

$$
r=\frac{k}{2}=3
$$

Pyramid Code - Information Locality

[Chen-Huang-Li'07]

- Or, cover $1 / 3$ of info symbols

Information Locality

$$
r=\frac{\boldsymbol{k}}{3}=2
$$

(II,6,2)
Pyramid

- Pyramid codes can be obtained from any systematic MDS codes with d.
- Assume that the first parity check symbol is the sum $\sum_{i=1}^{k} x_{i}$ of info symbols.
- Replace this with $\left\lceil\frac{k}{r}\right\rceil$ parity checks each of size at most r on disjoint info symbols.
- Then, the resulting code \mathcal{C} has information locality r and distance d, while the redundancy is given by

$$
n-k=\left\lceil\frac{k}{r}\right\rceil+d-2
$$

Therefore, Pyramid codes are optimal.

Explicit Codes with All-symbol Locality

- [Silberstein-Rawat-Koyluoglu-Vishwanath`13]
- Optimal length codes with all-symbol locality for $q=2^{n}$
- Constructions based on Gabidulin codes (maximum rank distance code)
- [Tamo-Barg`14]
- Optimal length codes with all-symbol locality for $q=O(n)$
- Constructions based on RS codes

Original view of RS codes

- Fix n points: $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- Given message vector $\mathbf{a}=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$
- Make a polynomial $f_{\mathbf{a}}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
- Generate(encode) a codeword $\left(f_{\mathbf{a}}\left(x_{1}\right), f_{\mathbf{a}}\left(x_{2}\right), \ldots, f_{\mathbf{a}}\left(x_{n}\right)\right)$

Intuition behind the RS-like LRC

[Tamo-Barg` l4]

- A symbol $f_{\mathbf{a}}\left(x_{1}\right)$ is erased

$$
\left(f_{a}\left(x_{1}\right), f_{\mathbf{a}}\left(x_{2}\right), \ldots, f_{\mathbf{a}}\left(x_{n}\right)\right)
$$

- $f_{\mathbf{a}}\left(x_{1}\right)$ can be recovered by RS decoding

Intuition behind the RS-like LRC

[Tamo-Barg` l4]

- Assume that there is a linear polynomial that passes through the points $\boldsymbol{f}_{\mathrm{a}}\left(\boldsymbol{x}_{\mathbf{1}}\right), \boldsymbol{f}_{\mathrm{a}}\left(\boldsymbol{x}_{5}\right)$ and $\boldsymbol{f}_{\mathrm{a}}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ of the codeword
- Only two points suffice to recover the lost point $f_{\mathbf{a}}\left(x_{1}\right)$

RS-like Codes

- $A_{1}, A_{2}, \ldots, A_{\frac{n}{r+1}}$ are disjoint subsets, each of size $\boldsymbol{r}+\mathbf{1}$
- $\boldsymbol{g}(\boldsymbol{x}) \in \mathbb{F}[\boldsymbol{x}]$ is a polynomial such that
- $\operatorname{deg}(g(x))=\boldsymbol{r}+\mathbf{1}$
$g(x)$ is constant on each subset $\boldsymbol{A}_{\boldsymbol{j}}: \quad g(\alpha)=g(\beta)$, for $\alpha, \beta \in A_{j}$

- Encoding:

* Given \boldsymbol{k} information symbols $\boldsymbol{a}_{\boldsymbol{i}, \boldsymbol{j}}, \quad i=0,1, \ldots, r-1, j=0,1, \ldots, \frac{k}{r}-1$
- Define the polynomial

$$
f_{a}(x)=\sum_{i=0}^{r-1} \boldsymbol{x}^{\boldsymbol{i}} \sum_{j=0}^{\frac{k}{r}-1} \boldsymbol{a}_{\boldsymbol{i}, \boldsymbol{j}} g(x)^{j}
$$

* The codeword of length n is $\left(f(\alpha): \quad \alpha \in \bigcup_{i=1}^{\frac{n}{r+1}} A_{i}\right)$

Example : $(n=9, k=4, r=2)$ LRC code over \mathbb{F}_{q}

- Since we need 9 distinct evaluation points of the field, we must choose $q \geq 9$.
- We will define the code \mathcal{C} over \mathbb{F}_{13}.
- Let the partition of all the nonzero elements of \mathbb{F}_{13} be as follows:

$$
\boldsymbol{A}_{\mathbf{1}}=\{\mathbf{1}, \mathbf{3}, \mathbf{9}\}, \quad \boldsymbol{A}_{\mathbf{2}}=\{\mathbf{2}, \mathbf{6}, \mathbf{5}\}=2 A_{1}, \quad \boldsymbol{A}_{\mathbf{3}}=\{\mathbf{4}, \mathbf{1 2}, \mathbf{1 0}\}=4 A_{1}
$$

- Note that $g(x)=x^{3}$ is constant on any set A_{i}

NOT a magic

- Let $a=\left(a_{0,0}, a_{0,1}, a_{1,0}, a_{1,1}\right)$ be the information vector of length $k=4$ over \mathbb{F}_{13}
- Define the encoding polynomial

$$
\begin{aligned}
f_{a}(x) & =\left(a_{0,0} g(x)^{0}+a_{0,1} g(x)^{1}\right), x\left(a_{1,0} g(x)^{0}+a_{1,1} g(x)^{1}\right) \\
& =x^{0}\left(a_{0,0}+a_{0,1} x^{3}\right)+x^{1}\left(a_{1,0}+a_{1,1} x^{3}\right)
\end{aligned}
$$

$a_{0,0}+a_{0,1} x^{3}$ is constant on all $x \in A_{i}$

Locality

- It is one less than the size of each subset $A_{i} \quad$ Therefore, it is r
- How to recover $\boldsymbol{f}(\boldsymbol{\alpha})$ for $\boldsymbol{\alpha} \in \boldsymbol{A}_{\mathbf{1}}$?
- Define $f_{i}(x)=\sum_{j=0}^{\frac{k}{r}-1} a_{i, j} g(x)^{j}$ so that the encoding polynomial is

$$
f(x)=\sum_{i=0}^{r-1} x^{i} \sum_{j=0}^{\frac{k}{r}-1} a_{i, j} g(x)^{j}=\sum_{i=0}^{r-1} x^{i} f_{i}(x)
$$

\checkmark Observe that $\boldsymbol{f}_{\boldsymbol{i}}(\boldsymbol{x})$ is constant on the any set $\boldsymbol{A}_{\boldsymbol{j}}(\because$ so is $\boldsymbol{g}(\boldsymbol{x}))$.

- Define $\delta(x)=\sum_{i=0}^{r-1} x^{i} \boldsymbol{f}_{\boldsymbol{i}}(\boldsymbol{\alpha})$.
\checkmark Then $\boldsymbol{f}(\boldsymbol{\alpha})=\boldsymbol{\delta}(\boldsymbol{\alpha})$, and $\operatorname{deg}(\delta(x)) \leq r-1$
\checkmark Any \boldsymbol{r} points on $\delta(x)$ will suffice to recover $\delta(x)$
- Use the r values $\left\{\delta(\beta)=f(\beta): \beta \in A_{1} \backslash \alpha\right\}$ to recover $\delta(x)$

Example (continued):

- The codeword c that corresponds to a is found as the evaluation of the polynomial f_{a} at all the points of the sets of the partition \mathcal{A}
- If $\mathbf{a}=(1,1,1,1)$, then the codeword becomes

$$
\begin{gathered}
\left(f_{\mathrm{a}}(1), f_{\mathrm{a}}(3), f_{\mathrm{a}}(9), f_{\mathrm{a}}(2), f_{\mathrm{a}}(6), f_{\mathrm{a}}(5), f_{\mathrm{a}}(4), f_{\mathrm{a}}(12), f_{\mathrm{a}}(10)\right) \\
=(4,8,7,1,11,2,0,0,0)
\end{gathered}
$$

- suppose that the value $c_{1}=f_{\mathbf{a}}(1)$ is erased
\checkmark Find the unique polynomial $\delta(x)$ of degree less than $r=2$ such that $\delta(\beta)=f_{\mathbf{a}}(\beta)$ for all $\beta \in A_{1} \backslash 1$
\checkmark It can be recovered by accessing two other codeword symbols at locations corresponding to 3 and 9

Example (continued): Polynomial Interpolation

- Given a set of $k+1$ points

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{j}, y_{j}\right), \ldots,\left(x_{k}, y_{k}\right)
$$

where no two x_{j} 's are the same,

- the interpolation polynomial in the Lagrange form is a linear combination

$$
L(x)=\sum_{j=0}^{k} y_{j} \boldsymbol{l}_{\boldsymbol{j}}(\boldsymbol{x}) \quad \text { of degree at most } \boldsymbol{k}
$$

of Lagrange basis polynomials

$$
\boldsymbol{l}_{\boldsymbol{j}}(\boldsymbol{x})=\prod_{\substack{ \\m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}}=\frac{x-x_{0}}{x_{j}-x_{0}} \cdot \frac{x-x_{1}}{x_{j}-x_{1}} \cdots \cdot \frac{x-x_{j-1}}{x_{j}-x_{j-1}} \cdot \frac{x-x_{j+1}}{x_{j}-x_{j+1}} \cdots \cdots \frac{x-x_{k}}{x_{j}-x_{k}}
$$

with $\boldsymbol{l}_{\boldsymbol{j}}\left(x_{j}\right)=1$ and $\boldsymbol{l}_{\boldsymbol{j} \neq \boldsymbol{i}}\left(x_{i}\right)=0$

- It follows that $y_{j} l_{j}\left(x_{j}\right)=y_{j}$
- Therefore, at each point $\boldsymbol{x}_{\boldsymbol{i}}$,

$$
L\left(x_{i}\right)=y_{i}+0+0+\cdots+0=y_{i}
$$

Example (continued): recovery

- To find one erased symbol, we need to perform polynomial interpolation from $r=2$ known symbols in its recovery set $\{(\mathbf{1},(\mathbf{3}, \mathbf{8}),(\mathbf{9}, 7)\}$
- Now, the interpolation polynomial $\delta(x)$ is

$$
\begin{aligned}
& \qquad \delta(x)=f_{\mathrm{a}}(3) l_{3}(x)+f_{\mathrm{a}}(9) l_{9}(x), \quad l_{3}(x)=\frac{x-9}{3-9}, \quad l_{9}(x)=\frac{x-3}{9-3} \\
& \text { where } l_{i}(x)=\prod_{j \in\{3,9\} \backslash i} \frac{x-j}{i-j} \\
& \delta(x)=8 \cdot \frac{x-9}{3-9}+7 \cdot \frac{x-3}{9-3}=2 x+2
\end{aligned}
$$

- Therefore, we can find the erased value $f_{\mathrm{a}}(\mathbf{1})=\delta(\mathbf{1})=4$

Optimality

- Encoding polynomial

$$
\boldsymbol{f}_{\mathbf{a}}(\boldsymbol{x})=\sum_{i=0}^{r-1} x^{i} f_{i}(x)=\sum_{i=0}^{r-1} x^{i} \sum_{j=0}^{\frac{k}{r}-1} a_{i, j} g(x)^{j}
$$

- k polynomials $g(x)^{j} x^{i}$ all are of distinct degrees, and therefore are linearly independent over \mathbb{F}
- The deg of $\boldsymbol{f}_{\mathrm{a}}(\boldsymbol{x})$ is at $\operatorname{most}\left(\frac{k}{r}-1\right)(r+1)+r-1=k+\frac{k}{r}-2=n-2$
* Two distinct encoding polynomials gives rise to two distinct code-vectors
- So the dimension of the code is \boldsymbol{k}
- The code distance satisfies

$$
d(C) \geq n-\max _{f_{a}, a \in \mathbb{F}_{q}^{k}} \operatorname{deg}\left(f_{a}\right)=n-k-\frac{k}{r}+2
$$

Binary Locally Repairable Codes

[Shahabinejad-Khabbanzian-Ardakani` I 4]

- Using a Parity-check matrix
| $n=15, k=10$
- This code has $\boldsymbol{d}_{\text {min }}=\mathbf{4}$ and locality $\boldsymbol{r}=\mathbf{6}$
* Best achievable minimum distance for given n and k
$d_{\text {min }}=4$
because

Binary Locally Repairable Codes [Kim-Nam-Song`15]

- Using a Generator Matrix
- Complete graph: $d=k, t=d-1 \quad$ This gives all-symbol availability

Example: $n=21, k=6, d=6, r=2$

$$
G=\left(\begin{array}{llllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

* p-partite graph: $d=k-\frac{k}{p}+1, t=d-1$: This gives information-symbol availability

Example: $n=15, k=6, d=4, r=2$

$$
G=\left(\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & \vdots & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Innovative Proposals

- Erasure codes with some form of locality
- Microsoft Azure Storage
- $(16,12,6)$ LRC

| y_{1} | y_{2} | y_{3} | y_{4} | y_{5} | y_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad P_{1} \quad P_{2}$

- Global parities p_{1}, P_{2} are found from all $x_{i}, y_{i}, i=I, 2, \ldots, 6$
- Local parities P_{x}, P_{y} provide local recovery for the information symbols

Innovative Proposals

- HDFS Xorbas (Facebook)
* (16, 10, 5) LRC

- Global parity $(14,10)$ RS code
- Local parity

$$
\begin{array}{ll}
s_{1}=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}+c_{5} x_{5} & x_{3}=c_{3}^{-1}\left(s_{1}-c_{1} x_{1}-c_{2} x_{2}-c_{4} x_{4}-c_{5} x_{5}\right) \\
s_{2}=c_{6} x_{6}+c_{7} x_{7}+c_{8} x_{8}+c_{9} x_{9}+c_{10} x_{10} & P_{1}=f_{1}^{-1}\left(-s_{1}-s_{2}-f_{2} P_{2}-f_{3} p_{3}-f_{4} p_{4}\right)
\end{array}
$$

One additional optimization

$$
s_{1}+s_{2}+s_{3}=0
$$

References

- A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. Infor. Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.
- P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, "On the locality of codeword symbols," IEEE Trans. Infor. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.
- C. Huang, M. Chen, J. Li, "Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems," in Proc. IEEE Intern. Symp. Network Comput. App. (NCA), 2007.
- F. Oggier, A. Datta, "Self-repairing homomorphic codes for distributed storage systems," in Proc. IEEE INFOCOM, 2011.
- D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, J. Li, "Simple regenerating codes: Network coding for cloud storage," in Proc. IEEE INFOCOM, 2012.
- I. Tamo, D. S. Papailiopoulos, A. G. Dimakis, "Optimal locally repairable codes and connections to matroid theory," IEEE Trans. Infor. Theory vol. 62, no. 12, pp. 6661-6671, Dec. 2016.
- N. Silberstein, A. S. Rawat, O. O. Koyluoglu, S. Vishwanath, "Optimal locally repairable codes via rank-metric codes," in Proc. IEEE Intern. Symp. Infor. Theory (ISIT), 2013.
- I. Tamo, A. Barg, "A family of optimal locally recoverable codes," IEEE Trans. Infor. Theory, vol. 60, no. 8, pp. 46614676, Aug. 2014.
- M. Shahabinejad, M. Khabbazian, M. Ardakani, "An efficient binary locally repairable code for hadoop distributed file system," IEEE Commun. Letters, vol. 18, no. 8, pp. 1287-1290, Jul. 2014.
- S. E. Rouayheb and K. Ramchandran, "Fractional repetition codes for repair in distributed storage systems," 48th Annu. Allerton Conf. Control, Comput., Commun., Sep. 2010.
- Jung-Hyun Kim and Hong-Yeop Song, "Hypergraph-based Binary Locally Repairable Codes with Availability," IEEE Communication Letters ,vol. 21, no. 11, pp.2332-2335, November 2017.
- Mi-Young Nam and Hong-Yeop Song, "Binary Locally Repairable Codes with Minimum Distance at least 6 based on Partial t-Spreads ," IEEE Communications Letters ,vol. 21, no. 8, pp.1683-1686, August 2017.
- Jung-Hyun Kim and Hong-Yeop Song, "Alphabet-Dependent Bounds for Locally Repairable Codes With Joint Information Availability ," IEEE Communications Letters ,vol. 21, no. 8, pp.1687-1690, August 2017.

[^0]: Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 255 I-2567.

