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Wiki says…

 In coding theory, fountain codes (also known as rateless 
erasure codes) are a class of erasure codes with the property 
that 
• a potentially limitless sequence of encoding symbols can be 

generated from a given set of source symbols such that 

• the original source symbols can ideally be recovered from any 
subset of the encoding symbols of size equal to or only slightly 
larger than the number of source symbols. 

 The term fountain or  rateless refers to the fact that these 
codes do not exhibit a fixed code rate.

5
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Wiki says…

 A fountain code is optimal if the original k source symbols can 
be recovered from any k encoding symbols. 

 Fountain codes are known that have efficient encoding and 
decoding algorithms and that allow the recovery of the original 
k source symbols from any 𝑘𝑘′ of the encoding symbols with 
high probability, where 𝑘𝑘′ is just slightly larger than k.

6
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Wiki says…

 LT codes were the first practical realization of fountain codes. 

 Raptor codes and online codes were subsequently introduced, 
and achieve linear time encoding and decoding complexity 
through a pre-coding stage of the input symbols.

7
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Discrete coding channel model

Binary Erasure Channel
 Many applications for data transmissions are 

based on the packet transmissions (over the 
wired or wireless internet with relatively “high” 
reliability)

 Packet losses on the packet based data 
transmission systems can be well modeled by 
the binary erasure channel (BEC), where received 
0 or 1 is error-free with probability 1 − 𝑝𝑝. BEC( p )

• A discrete coding channel is a model of communication channel including 
digital modem, rx(tx) antenna and analog physical (RF/CABLE) channel. 

• It is characterized by (1) input alphabet (2) output alphabet, and (3) 
transition probabilities between these two.

• Famous examples are BSC, BEC, etc.
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Communication over Multiple Unknown BECs

9
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Fountain codes is designed for…

10

Dissemination of bulk data to many 
users, where
(1) each user may choose when to 

receive,
(2) no retransmission is required, 

hence,
(3) no back channel for 

retransmission request is needed, 
and finally,

(4) reception of the same amount of 
data as the source data is enough to 
recover the original bulk data
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Data Carousel Approach (Merry-go-round)
 The source repeatedly loops through 

transmission of all data packets
 Receivers may join the stream at any time
 Extremely high reception overhead

 Adding redundant codewords to the carousel
 Reduce reception overhead
 The source repeatedly loops through the set of coded 

blocks

 These approaches eliminate the need for 
retransmission requests
 can be thought as weak approximations of an ideal 

solution, digital fountain

11
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Why the Name Fountain Code?
 Think of the symbols as drops of water
 Fill a bucket with these drops

 As soon as you have enough drops, the bucket is full, and you can drink 
your water

 It does not matter (1) which particular drops fill your 
bucket, or (2) when to receive the drops in which order, 
only the total amount matters

12
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Digital Fountain Ideal
 An ideal digital fountain that transmits a file (consisting 

of 𝒌𝒌 symbols) should have the following properties:

1. It can generate an endless supply of encoding 
packets with constant encoding cost per symbol in 
terms of time or arithmetic operations

2. A user can reconstruct the file using any 𝒌𝒌 symbols 
with constant decoding cost per symbol, meaning 
that the decoding is linear in 𝒌𝒌.

14



copyright @ Hong-Yeop Song

Digital Fountain (ideal case)

15

source𝒌𝒌

endless
encoded stream

…

Instantaneous

Transmission

received𝒌𝒌

message𝒌𝒌

Instantaneous
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Digital Fountain

16
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Approximating A Digital Fountain
(in reality)

17

source𝒌𝒌

encoded
stream

…

Encoding Time

Transmission

received𝒌𝒌(𝟏𝟏 + 𝜹𝜹)

message𝒌𝒌

Decoding Time
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Binary Fountain Codes

 Notations
 𝑉𝑉 = the 𝑘𝑘-tuple vector space over 𝔽𝔽2
 𝑉𝑉∗ = 𝑉𝑉 ∖ {𝟎𝟎𝑘𝑘×1}
 Fix a distribution 𝓓𝓓 on 𝑉𝑉∗

 A binary fountain code is defined by parameters 
𝒟𝒟,𝑘𝑘 , where 𝑘𝑘 is the number of input symbols

18

EXAMPLE:
When 𝑘𝑘 = 2, for example, we have a distribution on

{(01), (10), (11)}, 
as {1/4, 1/4, 1/2}, 

meaning that
Prob(01)=Prob(10)=1/4 and

Prob(11)=1/2
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Encoding
 To construct a coded output symbol, 

1. sample independently from 𝒟𝒟 and 
2. add input symbols corresponding to the sampled output

 Repeat this endlessly (rateless)

19

𝑥𝑥1

𝑥𝑥1 + 𝑥𝑥2

Example
𝑘𝑘 = 2

𝑥𝑥1

𝑥𝑥2

𝑘𝑘 Info. symbols

⋮

Endless sequence of
encoded symbols

𝑥𝑥2

𝑥𝑥1 + 𝑥𝑥2

Sequence of  
samples from 𝓓𝓓

(11)

(10)

(01)

(11)

⋮

𝓓𝓓

A distribution on V*

(10)  --- 1/4
(01)  --- 1/4
(11)  --- 1/2

Value  --- Prob.
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Encoding (alternative implementation)

20

𝑥𝑥1

𝑥𝑥1 + 𝑥𝑥2

Example
𝒌𝒌 = 𝟐𝟐

𝑥𝑥1

𝑥𝑥2

𝒌𝒌 Info. symbols

⋮

Endless
encoded. symbols

𝑥𝑥2

𝑥𝑥1 + 𝑥𝑥2

Sequence of  
samples from 

the distribution 

2

1

1

2

⋮

A distribution on 
{1,2,…,𝒌𝒌 = 𝟐𝟐}

1  --- 1/2
2  --- 1/2

Value  --- Prob.
Choose uniform-randomly

from the symbols
according to the sample

The randomness is moved from 
the distribution 𝓓𝓓 to here
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Example for 𝑘𝑘 = 4

21

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝓓𝓓1000

𝑥𝑥1

0101

𝑥𝑥2 + 𝑥𝑥4

…….  …  …Encoded 
symbols

sample

A given 
distribution on 
binary 4-tuples

1011

𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥4

1000         1/32
0100 1/32
0010 1/32
0001 1/32
1100      1/16
0110 1/16
0011 1/16
1010 1/16
0101 1/16
1001 1/16
1110 1/16
1101 1/16
1011 1/16
0111 1/16
1111        𝟒𝟒/𝟏𝟏𝟏𝟏
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Distribution on 
the choice

Example for 𝑘𝑘 = 4 (alternative way)

22

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝟏𝟏,𝟐𝟐, … ,𝟒𝟒1

𝑥𝑥1

2

𝑥𝑥2 + 𝑥𝑥4
𝑥𝑥1 + 𝑥𝑥3
𝑥𝑥3 + 𝑥𝑥4

⋮

…….  …  …Encoded 
symbols

sample

A distribution on
{1,2,3,4}

3

𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥4
⋮𝑥𝑥2

⋮

1 2/16
2 6/16
3 4/16
4 4/16

1,2,3  - uniform random for 4,6,4
4    - only one choice
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Key issues on design and implementation

23

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4

𝓓𝓓1000

𝑥𝑥1

0101

𝑥𝑥2 + 𝑥𝑥4

…….  …  …Encoded 
symbols

sample

Key 1(design issue)

how to design 𝓓𝓓 ?

1011

𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥4

Key 2 (implementation issue – tricky)
• Each tx-and-rx coded symbol must contain an indication of how 

it was generated, otherwise the received symbol is useless
• In practice, this can be done by indicating a seed for the 

random number generators shared by tx and rx
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Decoding is to solve some 
simultaneous linear equations over 𝔽𝔽2

 Best known algorithm?   
 Gauss Elimination Algorithm (200 years old) in quadratic time

 Here, we have to do much faster.

24

𝑥𝑥1 = 𝑐𝑐2

𝑥𝑥1 + 𝑥𝑥2 = 𝑐𝑐1

𝑥𝑥2 = 𝑐𝑐3

𝑥𝑥1 + 𝑥𝑥2 = 𝑐𝑐4

⋮

Determine 
𝑥𝑥1 =?
𝑥𝑥2 =?
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Performance Measures
 Encoding cost
 The expected encoding cost of a fountain code with parameters 𝒟𝒟, 𝑘𝑘 is 

the expectation of the weight function under 𝓓𝓓
𝐸𝐸𝒟𝒟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥

 This corresponds to the expected per-symbol cost of encoding
 The best encoding cost is constant 𝑂𝑂 1

 Decoding cost
 The expected decoding cost of a fountain code with parameters 𝒟𝒟, 𝑘𝑘

using a specific decoding algorithm is the expected number of 
arithmetic operations (i.e., additions over 𝔽𝔽2) that the algorithm uses to 
decode the source symbols

 The best decoding cost is linear in 𝑘𝑘, i.e., 𝑂𝑂 𝑘𝑘

 Overhead (reception overhead)
 𝜀𝜀 is the overhead if decoding can be done from any set of 𝑘𝑘 1 + 𝜀𝜀

output symbols with high probability

25
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Some History
 Fountain codes were stipulated by Byers et 

al in 1998, and their applications discussed. 
A construction was, however, not given.

 First construction of efficient Fountain codes 
was given by Luby in 1998 (published in 
2002).

 Raptor codes were invented motivated by 
the objective of improving the encoding and 
decoding complexity (published in 2006).

26

Byers, J. W., Luby, M., Mitzenmacher, M., & Rege, A. (1998). 
A digital fountain approach to reliable distribution of bulk 
data. ACM SIGCOMM Computer Communication Review, 28, 
56–67.

Luby, M. (2002). Lt codes. In Annual symposium on foundations 
of computer science, 2002 (pp. 271–280).

Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on 
Information Theory, 52(6), 2551–2567.



APPROXIMATIONS OF DIGITAL FOUNTAIN

REED-SOLOMON CODES
TORNADO CODES
LT CODES
RAPTOR CODES

Not rateless = With “rate”

Rateless approach in theory, but
there is a “rate” in practice

(overhead)
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Reed-Solomon Codes

RS codes (over BEC) is the first example of “fountain-like” codes

 Optimal overhead
 A message of 𝑘𝑘 symbols can be recovered from any 𝑛𝑛 = 𝑘𝑘 + 𝑟𝑟 encoding symbols

 Dense systems of linear equations
 Poor encoding cost (linear in 𝑘𝑘)
 Poor decoding cost (quadratic in 𝑘𝑘)

 Limitation on the number of distinct encoding symbols
 The field size gives a limitation on the number of distinct encoding symbols that 

can be generated
 Larger fields introduce nontrivial overhead for the resulting field arithmetic 

operations

28
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Tornado Codes [1997]

 Sparse systems of equations
 Large encoding/decoding cost for RS codes arises from the 

dense system of linear equations
 Fast encoding and decoding (linear in 𝒌𝒌)

 Suboptimal overhead
 The price we pay for much faster encoding and decoding is that 
𝑘𝑘 packets no longer suffice to reconstruct the source data

 Challenges for Tornado Codes
 Designing the proper structure for the system of equations so 

that
 The number of additional packets is small
 The encoding/decoding costs are small
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Tornado Codes
 Random erasure channel model (BEC)

 Each bit is lost independently with a fixed (given) probability 𝜇𝜇
 We know the positions of the lost bits

 We want a binary linear block code with rate 𝟏𝟏 − 𝒑𝒑 that can 
correct 𝟏𝟏 − 𝜺𝜺 𝒑𝒑 fraction of the erasures
 This is a binary [𝒏𝒏, 𝟏𝟏 − 𝒑𝒑 𝒏𝒏, 𝟏𝟏 − 𝜺𝜺 𝒑𝒑𝒏𝒏 + 𝟏𝟏] code

 We will use 𝒅𝒅-regular bipartite graphs with 𝑘𝑘 nodes on the left and 
𝑝𝑝𝑘𝑘 on the right

30

m1
m2
m3

mk

c1

cpk

degree = 2ddegree = d

k = # of message bits
(assume 𝑝𝑝 = 0.5)
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Tornado Codes: Encoding

 Linear time encoding

31

Computes the sum mod 2 
of its neighborsm1

m2

m3

mk

c1

ck/2

An example of
expander graphs
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Tornado Codes: Decoding

 Assume that all the check bits are intact (NOT in ERROR)
 Find a check bit ci such that only one of its neighbors is erased 
 an unshared neighbor

 Fix the erased symbol, and repeat

32

m1

m2

m1+m2+c1 = m3

c1

cpk
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Tornado Codes: Decoding

 We need to always find such a check bit with the unshared-neighbors 
property

 Consider the set of corrupted message bits and their neighbors
 At least one check bit has an unshared neighbor

 Can we always find unshared neighbors?

33

m1
m2

mk

c1

ck/2

unshared 
neighbor
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Tornado Codes: Decoding

 What if check bits are erased?
 Use another bipartite graph to construct another level of check bits for the 

check bits
 Final level is encoded using RS or some other (linear block) code

34

k pk
p2k

Total # of check bits: 

�
𝑖𝑖=1

𝑚𝑚+1

𝑝𝑝𝑖𝑖𝑘𝑘 +
𝑝𝑝𝑚𝑚+2𝑘𝑘
1 − 𝑝𝑝 =

𝑘𝑘𝑝𝑝
1 − 𝑝𝑝

Codeword length: 

𝑛𝑛 = 𝑘𝑘 +
𝑘𝑘𝑝𝑝

1 − 𝑝𝑝 =
𝑘𝑘

1 − 𝑝𝑝
Rate:

𝑘𝑘
𝑛𝑛 = (1− 𝑝𝑝)

Pm+1k Pm+2k/(1-p)
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Tornado Codes - summary

 Optimal degree sequences
 The decoding algorithm is equivalent to finding a node of degree one on the right, 

and then removing it, its neighbor, and all edges adjacent to the neighbor from the 
sub-graph

 Repeat this until no nodes of degree one are available at every step of 
decoding

 The optimal degree distributions are designed in such a way that there are a small 
number of degree one right nodes available at every time step

 Better approximation to digital fountains than Reed-Solomon codes
 Linear time encoding/decoding

 Still suffer from a powerful drawback in that the code is not rateless
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LT Codes [2002]
 The first practical realization of rateless codes

 Advantage over Tornado codes
 With Tornado codes, even after designing the degree distribution, some 

care must be taken to design the actual graph used as well
 With LT codes, there is no explicit graph to optimize

 Near-ideal digital fountain
 Encoding can be done on the fly in time proportional to ln𝑘𝑘
 Decoding can be done in time proportional to 𝑘𝑘 ln 𝑘𝑘

36
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The degree of 
an encoding symbol 

has 
a predetermined
(pre-designed) 

distribution

LT Codes – encoding/decoding

37

Data symbols,
Input symbols,
Information symbols,
Source symbols Encoding symbols,

Output symbols,
Check symbols

Each encoding symbol 
is an XOR of some data 

symbols.

…
…

..

Encoding symbols are 
generated infinitely long

fix
ed

 a
m

ou
nt

 d
at

a
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LT Codes – the best one could hope for

 Reduce the average degree to a constant, and the decoding time to 𝑂𝑂(𝑘𝑘)

 Simply for every message node to have at least one neighbor when there are 𝑂𝑂(𝑘𝑘) encoding 
symbols, the average degree must be at least Ω(ln𝑘𝑘)

 However, using pre-coding, the average degree can be reduced to a constant

 This is the “Raptor code”

38

This cannot be done in the strict LT framework
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Raptor Codes [2006]
 Extend the idea of LT codes one important step farther

 First pre-code the message M by encoding it with a fixed erasure code
 Now treat the encoded version 𝐌𝐌′ as the message, so that encoding symbols are the XOR 

of packets of M′, in a manner similar to LT codes
 Now, we just need to recover a constant fraction of the packets of M′

 The bound on the average degree Ω ln 𝑘𝑘 no longer applies

 For any constant 𝜀𝜀 > 0 and sufficiently large 𝑘𝑘, the message M can be 
decoded after receiving only 𝟏𝟏 + 𝜺𝜺 𝒌𝒌 packets with high probability, 
with the degree of each encoding symbol being 𝑂𝑂 ln 1

𝜀𝜀
and the total 

decoding time being 𝑂𝑂 𝑘𝑘 𝑙𝑙𝑛𝑛 1
ε

39



LT CODES

ENCODING
DECODING
DEGREE DISTRIBUTIONS

PRELIMINARY (BALLS-IN-BINS EXERCISE)
IDEAL SOLITON DISTRIBUTION
ROBUST SOLITON DISTRIBUTION

M. Luby, “LT codes,” presented at the Proc. IEEE Foundations of Computer Science (FOCS), 2002.
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Encoding
 An 𝒌𝒌,𝝆𝝆 𝒙𝒙 LT code

 The number of input symbols is 𝒌𝒌
 The degree sequence is (𝜌𝜌1,𝜌𝜌2, … ,𝜌𝜌𝑘𝑘) ,𝑤𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤 𝝆𝝆(𝒙𝒙) = ∑𝒊𝒊=𝟏𝟏𝒌𝒌 𝝆𝝆𝒊𝒊𝒙𝒙𝒊𝒊

 Any number of encoding symbols can be independently generated from 
𝒌𝒌 information symbols by the following encoding process:

1. Determine the degree 𝒅𝒅 of an encoding symbol. The degree is chosen at random from a 
given degree distribution 𝝆𝝆 𝒙𝒙 .

2. Choose 𝑑𝑑 distinct information symbols uniformly at random. They will be neighbors of 
the encoding symbol.

3. Assign the XOR of the chosen 𝑑𝑑 information symbols to the encoding symbol

 The degree distribution 𝝆𝝆 𝒙𝒙 determines the performance of LT codes, such as the 
number of encoding symbols for successful decoding (overhead).

41
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Encoding

 Encoding graph G

42

d
v

2
(101000)

2
(110000)

2
(000011)

2
(000101)

1
(010000)

1
(000010)

3
(100101)

1
(001000)

1
(001000)

1
(000100)

𝑑𝑑 𝜌𝜌𝑑𝑑

1 0.5

2 0.4

3 0.1

4 0

5 0

6 = 𝑘𝑘 0

⋇ The receiver must know the encoding graph G that is used by the sender

The degree 𝑑𝑑 of an encoding symbol is determined by the degree distribution 𝜌𝜌 𝑥𝑥

Every vector of weight 𝑑𝑑 is chosen with probability 
𝜌𝜌𝑑𝑑
𝑘𝑘
𝑑𝑑

degree distribution 𝜌𝜌 𝑥𝑥
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Decoding
I will go through some examples first,
and then, summarize the process

43
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Received encoded symbols

Decoding

44

Example 1 Encoding graph

Information symbols.

initially “uncovered” 
(by any value)

= no values are assigned

a

b
c
d
e

f
g
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= decoded values 
are determined

Decoding

45

Example 1
Find all the encoding symbols of degree 1.

Here, there are 3 such symbols.
“Release” them to “cover” the info symbols.

a

b
c
d
e

f
g

c
d
f

covered by
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Decoding

46

Example 1

These three information symbols are now “covered”
(= the decoded values are determined)

Then, these three information symbols (covered but not yet processed) 
are put into the set, called “the Ripple”

Ripplecd
f

a

b
c
d
e

f
g
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Decoding
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Example 1

Ripple

Any one information symbol in a Ripple 
is chosen to be “processed”

a

b
c
d
e

f
g

c
d
f

All the neighbor encoding symbols are updated
and the corresponding edges are removed.

The processed info symbol is removed from the Ripple.
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Decoding
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Example 1

Ripple

1 information symbol in the Ripple is processed.

In the Ripple, 2 information symbols are remained

a

b+f
c
d
e

f
g

c
d
f
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Decoding
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Example 1

Ripple

No encoding symbol has degree one

a

b+f
c
d
e

f
g

c
d
f
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Decoding
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Example 1

Ripple

Any one information symbol in the Ripple is 
AGAIN chosen to be processed

a

b+f
c
d
e

f
g

c
d
f



copyright @ Hong-Yeop Song

Decoding
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Example 1

Ripple

The only one remaining information symbol in the Ripple
is processed

a

b+f
c
d
e+d

f
g+d

c
d
f
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Decoding
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Example 1

Ripple

Release the encoding symbol of degree 1
to cover the neighbor symbol

c
d
f

a

b+f
c
d
e+d

f
g+d
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Decoding
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Example 1

One more information symbol is covered (by the value e+d )
Then, this information symbol (covered but not yet processed) is put into the Ripple 

Ripplecd
f

e+d

a

b+f
c
d
e+d

f
g+d

released
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Decoding
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Example 1

Ripple

1 information symbol in a Ripple is chosen to be processed

c
d
f

e+d

a

b+f

g+d
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Decoding
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Example 1

Ripple

1 information symbol in a Ripple is processed
In the Ripple, 1 information symbol is remained

c
d
f

e+d

a+c

b+f

g+d
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Decoding
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Example 1

Ripple

Release the encoding symbol of degree 1

a+c

b+f

g+d

c
d
f

e+d

a+c
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Decoding
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Example 1

One more information symbol is covered
Then, this information symbol is put into the Ripple 

Ripple

c
d
f

e+d

a+c
b+f

g+d
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Decoding
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Example 1

Ripple

1 information symbol in a Ripple is chosen to be processed

c
d
f

e+d

a+c
b+f

g+d
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Example 1

Ripple

1 information symbol in a Ripple is processed
In the Ripple, 1 information symbol is remained

c
d
f

c
d
f

e+d

a+c
b+f+e+d

g+d+e+d
=g+e

We must have that
g+e=a+c

Otherwise, decoding fails!!
This must always be true

since we assume BEC
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Example 1

Ripple

Release encoding symbols of degree 1

c
d
f

e+d

a+c
b+f+e+d

g+d+e+d
=g+e

b+f+e+d

=g+e
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Example 1

Ripple

Success!!

All information symbols are covered!

c
d
f

e+d

a+c

b+f+e+d

=g+e

One condition for the end of decoding
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Decoding Example of Failure
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1

0

0

0

0

1

0

Example 2
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0

0

0

1

0

0
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1

0

0

0

0

1

0

0
0

Ripple
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Ripple
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0

0

0
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0
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1Ripple
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1

0

0

0

0
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1
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1

0

0

0

0

0

0

0
0

1

No encoding symbols of degree one
& Ripple is empty

Fail !!

Another condition for the end of decoding

since some of the information symbols 
are still uncovered.
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Decoding
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Example 3

Fail !!
even without beginning

There is an information symbol with no edge
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Decoding - LT Process

1. (Release) 
 Release all the degree-1 encoding symbols.
 If no encoding symbol has degree-1, then go to Step 3.

2. (Cover) 
 The released encoding symbols cover their unique neighbor information symbols, and 

these covered symbols are put into a set called “ripple.”
 If all the information symbols are covered, decoding succeeds.

3. (Process)  
 If ripple is empty, (with some uncovered symbols) the decoding fails.
 Otherwise, any one information symbol in the ripple is chosen (at random) to be 

processed: the edges connecting the information symbol to its neighbor encoding 
symbols are removed and the value of each encoding symbol is updated.

 The decoding process continues by iterating the above three steps

72

(All information symbols are initially uncovered and a ripple is empty)
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Designing The Degree Distribution
- code design problem

 The desired property
 The probability of success recovery is as high as possible 
 The number of required encoding symbols for successful decoding is kept small

 The degree distribution is a critical part of the design
 Many packets must have low degree 

 The decoding process can get started and keep going 
 The total number of operations involved in the encoding and decoding is kept small

 Some packets must have high degree
 In order to ensure that there are not some source packets connected to no one

 Therefore, the degree distribution of encoding symbols needs to be 
elaborately designed so as to balance between the above trade-off

73
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Designing The Degree Distribution

 The All-At-Once distribution (Example)

 𝜌𝜌1 = 1 and 𝜌𝜌𝑑𝑑 = 0 𝑓𝑓𝑓𝑓𝑟𝑟 𝑑𝑑 = 2,3, …

 Encoding symbols have one neighbor each 

 Any received encoding symbol can 
immediately recover the associated 
information symbol

 Same as the Data Carousel

74

Information symbols Encoding symbols

Erased and cannot received

cannot recover this information symbol
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Balls-In-Bins Exercise
Imagine that we throw 𝑛𝑛 balls independently at random into 𝑘𝑘 bins, where 𝒌𝒌 (≅ 𝒏𝒏) is 
a large number, say, 1,000 or 10,000 or more. What is the fraction of bins without 
any ball ?

 The probability that any bin is empty is 1 − 1
𝑘𝑘

𝑛𝑛
≅ 𝑤𝑤−𝑛𝑛/𝑘𝑘 ≅ 𝑤𝑤−1

 The number of empty bins will be 𝑘𝑘/𝑤𝑤
 So, the fraction of bins without any ball becomes again 1/𝑤𝑤

75

Define a random variable 𝑋𝑋𝑖𝑖 = 1 if 𝑤𝑤-th bin is empty and 𝑋𝑋𝑖𝑖 = 0 otherwise.
Then,

𝑃𝑃[𝑋𝑋𝑖𝑖 = 1]=1/𝑤𝑤 and 𝑃𝑃[𝑋𝑋𝑖𝑖 = 0]=1 − 1/𝑤𝑤
Therefore, 

𝐸𝐸 𝑋𝑋𝑖𝑖 = 1/𝑤𝑤

The number 𝑌𝑌 of empty bins is now given by
𝑌𝑌 = ∑𝑋𝑋𝑖𝑖

Its expectation becomes
𝐸𝐸 𝑌𝑌 = ∑𝐸𝐸 𝑋𝑋𝑖𝑖 = ∑ 1/𝑤𝑤 = 𝑘𝑘/𝑤𝑤
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Balls-In-Bins Exercise
If we throw three times as many balls as there are bins, is it likely that any bins 
will be empty?
 If 𝑛𝑛 = 3𝑘𝑘, the empty fraction drops to 1/𝑤𝑤3, about 5%

In order for the probability that all 𝒌𝒌 bins have at least one ball to be 𝟏𝟏 − 𝜹𝜹, 
we require at least 𝒏𝒏 = 𝒌𝒌 𝒍𝒍𝒏𝒏 𝒌𝒌

𝜹𝜹
balls

 For general 𝑛𝑛, the expected number of empty bins is 𝑘𝑘𝑤𝑤−
𝑛𝑛
𝑘𝑘

 𝑘𝑘𝑤𝑤−
𝑛𝑛
𝑘𝑘 < 𝛿𝛿 only if 𝑛𝑛 > 𝑘𝑘 ln(𝑘𝑘/δ)
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Conclusion:
In order for almost every 𝒌𝒌 bins to be filled with at least one ball
we have to throw at least 𝒌𝒌 𝒍𝒍𝒏𝒏 𝒌𝒌 balls
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Balls-In-Bins Exercise     Degree Distribution
 The classical process of throwing balls into bins can be viewed as the LT 

process
 Balls: edges
 Bins: source packets (information symbols)
 In order for decoding to be successful, every bin(source symbol) must have 

(necessarily) at least one ball(edge in the graph) in it. Otherwise, decoding 
will not be started.

 The special case where all the encoding symbols have degree one: 
 This has the ‘all-at-once’ distribution: 𝜌𝜌 1 = 1 (every symbol has 

degree 1)

77

If every encoding symbol has degree 𝟏𝟏,  then
the receiver must have at least 𝒌𝒌 𝐥𝐥𝐥𝐥𝒌𝒌 encoding symbols

(necessary condition for the start of the decoding possible)
Less than this much receptions will definitely fail to recover 𝒌𝒌 source symbols
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Balls-In-Bins Exercise     Degree Distribution
 The classical process of throwing balls into bins can be viewed as the LT process

 Balls: edges
 Bins: source packets (information symbols)
 In order for decoding to be successful, every bin(source symbol) must have (necessarily) 

at least one ball(edge in the graph) in it. Otherwise, decoding will not be started.
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Conversely, (one can prove that)

For the successful recovery using exactly 𝒌𝒌 encoding symbols,
it is required that 

every encoding symbol must have degree at least 𝐥𝐥𝐥𝐥 𝒌𝒌. 
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Ideal Soliton Distribution
 Ideally, to avoid redundancy, we would like the received graph to have the 

property that just one output symbol has degree one at each iteration
 At each iteration, when this output node is released, the degrees in the graph are 

reduced in such a way that one new degree-one output node appears
 This Ideal Soliton distribution displays ideal behavior in terms of the expected 

number of encoding symbols needed to recover the data, in contrast to the All-At-
Once distribution

 In expectation, this ideal behavior is achieved by the ideal soliton distribution

𝜌𝜌 1 =
1
𝑘𝑘

𝜌𝜌 𝑤𝑤 =
1

𝑤𝑤 𝑤𝑤 − 1
, 𝑤𝑤 = 2, … , 𝑘𝑘

79
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Ideal Soliton Distribution
 In practice, the Ideal Soliton Distribution shows poor performance
 The main problem with Ideal Soliton Distribution is that the expected ripple 

size  is too small (=1)
 Any variation in the ripple size is likely to make the ripple disappear and then the 

overall process fails

 The Robust Soliton Distribution ensures that the expected ripple size is 
large enough at each point in the process so that it never disappears 
completely in high probability
 On the other hand, in order to minimize the overall number of encoding symbols 

used, it is important to minimize the expected ripple size so that not too many 
released encoding symbols redundantly cover input symbols already in the ripple

80
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Robust Soliton Distribution
 The Robust Soliton distribution 

𝜇𝜇𝑑𝑑 =
𝜌𝜌𝑑𝑑 + 𝜏𝜏𝑑𝑑

𝛽𝛽
where 𝛽𝛽 is the normalization constant chosen to ensure that 𝜇𝜇 is a probability 
distribution, and

𝜏𝜏𝑑𝑑 =

𝑹𝑹/𝒌𝒌
𝒅𝒅

for 𝒅𝒅 = 𝟏𝟏, … , 𝒌𝒌
𝑹𝑹
− 𝟏𝟏

(𝑹𝑹
𝒌𝒌

) 𝒍𝒍𝒏𝒏 𝑹𝑹
𝜹𝜹

𝐟𝐟𝐟𝐟𝐟𝐟 𝒅𝒅 = 𝒌𝒌
𝑹𝑹

0 for 𝑑𝑑 = 𝑘𝑘
𝑅𝑅

+ 1, … , 𝑘𝑘

 It is designed to ensure that the expected number of degree-one output symbols is 
about 𝑹𝑹 ≡ 𝒄𝒄 𝒍𝒍𝒏𝒏 𝒌𝒌

𝜹𝜹
𝒌𝒌 ≫ 𝟏𝟏 (rather than 1 in ideal soliton), throughout the 

decoding process
 The parameter 𝜹𝜹 is a bound on the probability that the decoding fails to run to completion
 The parameter 𝒄𝒄 is a constant of order 1

81

Ideal soliton

(a spike!!)

perturbed

Diminishing marginals
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Ideal Soliton Distribution and 𝝉𝝉 𝒅𝒅
for the case 𝒌𝒌 = 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝒄𝒄 = 𝟎𝟎.𝟐𝟐,𝜹𝜹 = 𝟎𝟎.𝟎𝟎𝟎𝟎
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Robust Soliton Distribution 
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Average Degree of an Encoding Symbol
(for RSD)

 The average degree of an encoding symbol is 

𝐷𝐷 =
∑𝑖𝑖 𝑤𝑤 𝜌𝜌 𝑤𝑤 + 𝜏𝜏 𝑤𝑤

𝛽𝛽

≤�
𝑖𝑖

𝑤𝑤 𝜌𝜌 𝑤𝑤 + 𝜏𝜏 𝑤𝑤

= �
𝒊𝒊=𝟐𝟐

𝒌𝒌+𝟏𝟏 𝟏𝟏
𝒊𝒊 − 𝟏𝟏 + �

𝑖𝑖=1

𝑘𝑘
𝑅𝑅−1𝑅𝑅

𝑘𝑘 + ln
𝑅𝑅
𝛿𝛿
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Sum of harmonic series
≈ ln 𝑘𝑘

Heavy burden on encoding/decoding complexity!!!
(though it guarantees good performance)



RAPTOR CODES

A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551-2567, Jun. 2006.
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Raptor Codes

 For LT codes, the encoding and decoding costs scale as 𝒌𝒌 𝒍𝒍𝒏𝒏𝒌𝒌
 We want linear time encoding and decoding!
 The code graph should have a lower average degree

 (Example) For the use of an LT code with average degree 𝑑𝑑 ≅ 3
 A fraction of the input symbols will not be connected to the graph and so 

will not be recovered
 From balls-in-bins exercise, the expected fraction of not recovered is 𝛿𝛿
≡ 𝑤𝑤−𝑑𝑑 , which for 𝑑𝑑 = 3 is 5% (too much!!!)

 Shokrollahi’s trick in Raptor codes
 LT code can recover a (1 − 𝛿𝛿)-fraction
 Pre-code can recover all the original symbols from any (1 − 𝛿𝛿)-fraction 
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Raptor Codes

Traditional Pre-codeencoding

LT-light

Output symbols

encoding

Input source symbols

decoding

𝜹𝜹 – fraction erasures

decoding
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Raptor Codes
 In general, Raptor code can be defined as a two-stage process
 An 𝑚𝑚, 𝑘𝑘 linear block code 𝐶𝐶, called pre-code, as the outer code
 An LT code specified by a node degree distribution Ω𝐷𝐷 𝑥𝑥 as the inner 

code

 Encoding cost is the sum of the encoding costs of the individual codes
 Decoding cost is the sum of the individual decoding costs

88

 Two additional performance measures
 Space

 Overhead

𝑘𝑘 = 6

Pre Code
𝑚𝑚 = 8

𝑛𝑛 = 9
LT Code

Space = 𝑚𝑚
𝑘𝑘

= 8
6

Overhead 𝜖𝜖 = 𝑛𝑛−𝑘𝑘
𝑘𝑘

= 3
6
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Raptor Codes
 Two extreme example

 LT codes (without pre-code)
 No pre-codes: space is close to 1
 Overhead is close to 0
 Time: logarithmic encoding and decoding cost

 Pre-Code Only codes (without LT code)
 Pre-codes with Ω 𝑥𝑥 = 𝑥𝑥: space is away from 1
 Overhead is away from 0

 Design Raptor codes between these two extremes
 Constant encoding and decoding cost
 Space is close to 1
 Overhead is close to 0
 These codes can be designed by choosing an appropriate output distribution 𝛀𝛀 𝒙𝒙 and 

an appropriate pre-code 𝑪𝑪

89
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Raptor Codes

 A Raptor code that will asymptotically have constant encoding and decoding costs, 

and minimum overhead and space when

 The pre-code 𝐶𝐶 has rate 𝑅𝑅 = 1+𝜖𝜖/2
1+𝜖𝜖

and is able to decode up to (1 − 𝑅𝑅)/2 fraction of 
erasures
 This is significantly less powerful than a capacity-achieving code, which can decode up to 1 − 𝑅𝑅

fraction of erasures

 Ω𝐷𝐷 𝑥𝑥 is close to an ideal soliton distribution but with some weight for degree one and 
capped to a maximum degree 𝐷𝐷

Ω𝐷𝐷 𝑥𝑥 =
1

𝜇𝜇 + 1
𝜇𝜇𝑥𝑥 + �

𝑖𝑖=2

𝐷𝐷
𝑥𝑥𝑖𝑖

𝑤𝑤 𝑤𝑤 − 1
+
𝑥𝑥𝐷𝐷+1

𝐷𝐷

 Setting 𝐷𝐷 = 4(1 + 𝜖𝜖)/𝜖𝜖 and 𝜇𝜇 = 𝜖𝜖
2

+ 𝜖𝜖
2

2

 This code has  space consumption 1/𝑅𝑅,
overhead 𝜖𝜖 and 
encoding/decoding cost of 𝑂𝑂 𝑙𝑙𝑛𝑛 1

𝜖𝜖
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A spike at D+1

𝜖𝜖 = 0.1 → 𝑅𝑅 = 105
110

(1-105/110)/2 =  5/220

= 110/105
𝜖𝜖 = 0.1

𝑂𝑂(𝑙𝑙𝑛𝑛 10 )

D = 4.4/0.1 = 44
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A variety of codes can be used as the pre-code

 LDPC codes - Low density gives a low complexity

91
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A variety of codes can be used as the pre-code
 Repeat Accumulate codes

 Add redundant for check point to recover but don’t add too large overhead
 More robust error correcting codes

92
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A variety of codes can be used as the pre-code

 Concatenated Pre-codes (3GPP) 

93
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Summary
 With many good properties, fountain codes have been applied to a variety 

of engineering applications, such as hybrid ARQ, scalable video streaming, 
and sensor networks

 Raptor codes have been adopted in several standards
 3GPP, where it is used for a mobile cellular wireless broadcast and multicast
 DVB-H standards, where it is used for IP datacast to handheld devices

 The characteristics of various codes that are designed for the digital fountain 
ideal
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Information Era
 Large-Scale Storage System

 Warehouse-scale data center
 Thousands of servers, Petabytes (or Exabytes) of disk space

Google
Data Center

http://www.google.com/about/datacenters/

⋇ Peta: 1015
Exa: 1018
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The Data Explosion

 We generate a huge amount of digital data

 We expect it to be stored reliably and accessible anytime, anywhere for free
 Total data in the cloud is of the order of few hundred exabytes
 Even storing raw data costs hundreds of millions
 Hardware is no longer cheap

 Currently, data centers consume up to 3 percent of all global electricity production 
while producing 200 million metric tons of carbon dioxide
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A Trace of Node Failures

 The number of failed nodes over a single month in a 3000 node production cluster of 

Facebook

102

M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, D. Borthakur, “XORing Elephants: Novel Erasure 
Codes for Big Data,” in Proc. of the 39th International Conf. on Very Large Data Bases, Aug. 2013.

• More than 20 nodes fail daily on average

Node failures are frequent and normal event 
rather than exceptional.

Repairing failed nodes consumes a 
significant amount of resources.
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Discrete coding channel model

BEC(p)

• A discrete coding channel is a model of communication channel including 
digital modem, rx(tx) antenna and analog physical (RF/CABLE) channel. 

• It is characterized by (1) input alphabet (2) output alphabet, and (3) 
transition probabilities between these two.

• Famous examples are BSC, BEC, etc.

BSC(p)

𝑝𝑝
𝑝𝑝

Disk failure is best modelled by BEC
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Data 1
of size k

A node (disk) of size BIG

Data 2
of size k’

Typical
model

encode

encode A node (disk) of size BIG

A node (disk) of size BIG
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Reliable Data Storage

 Goal: Tolerate one disk failure

 Solution:
 Duplication

 2x overhead
 Quick recovery

 Simple XOR – RAID 5
 Treat each disk as a bit vector
 1.2x overhead
 Slower recovery

105

Channel model

Erasure only channel
without errors
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Reliable Data Storage

 Goal: Tolerate two disk failures

 Solution:
 Triplication

 3x overhead
 Quick recovery

 (6,4) Reed Solomon Code – RAID 6
 1.5x overhead
 Slower recovery
 Need a larger field: each disk is a byte-vector

106

𝒅𝒅 = 𝟑𝟑
1-error correcting

or
2-erasure correcting

Channel model

Erasure only channel
without errors
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Limitations of Reed-Solomon Codes
 Traditional erasure-correcting codes are optimized for regeneration of the original 

message
 But not for regeneration of individual lost parts

 Example: (14, 10) RS code with d=14-10+1=5

107

2-error correcting
or

4-erasure correcting

1 2 3 4 5 6 7 8 9 10

P1 P2 P3 P4

Access any 10 surviving nodes
and download the data

RS Decoding

1 2 3 4 5 6 7 8 9 10

Reconstruct the whole file

4

Failure of 
info node
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Limitations of Reed-Solomon Codes

 Example: (14, 10) RS code with d=14-10+1=5

108

2-error correcting
or

4-erasure correcting

1 2 3 4 5 6 7 8 9 10

P1 P2 P3 P4

Access the 10 info nodes
and download them

1 2 3 4 5 6 7 8 9 10

access the whole message file RS Encoding

P4

Do we really have to reconstruct the whole message
in order to recover a single node failure?

Failure of 
parity node
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Good Repair Process
 How many nodes(disks) have to be accessed and how much data from each 

node must be downloaded for the repair?

 Metric: Total bandwidth during the repair
 Regenerating Codes [Dimakis-Godfrey-Wu-Wainwright-Ramchandran `10]
 Model allows connecting many disks

 How many nodes(disks) have to be accessed?

 Metric: Total number of disks participating in the repair
 Locally Repairable Codes (LRC) [Gopalan-Huang-Simitci-Yekhanin `12]

109



Locally Repairable Codes



copyright @ Hong-Yeop Song

LRC Example

111

x1 x2 x3 x4 px

y1 y2 y3 y4 py

z1 z2 z3 z4 pz

q

: Local parity

: global parity

• Local reconstruction for x1
x1 = px – (x2+x3+x4)
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Locality

 Let 𝒞𝒞 be an 𝑛𝑛, 𝑘𝑘 𝑞𝑞 code of length 𝑛𝑛, dimension 𝑘𝑘 over a finite field 𝔽𝔽𝑞𝑞

 The locality of the 𝑤𝑤-th coordinate of 𝒞𝒞 is 𝑟𝑟 if the value of the 𝑤𝑤-th symbol of a 
codeword of 𝒞𝒞 is a function of 𝑟𝑟 other coordinates and no such a set of coordinates 
of cardinality less than 𝑟𝑟 exists

 The set of such 𝑟𝑟 coordinates that can repair the 𝑤𝑤-th symbol is called a repair set

 The locality of the code 𝒞𝒞 is 𝑟𝑟 if the symbol locality of every symbol in a codeword
of 𝒞𝒞 is at most 𝑟𝑟

An 𝑛𝑛, 𝑘𝑘 code 𝒞𝒞 with locality 𝑟𝑟(≪ 𝒌𝒌) is defined as an 
𝑛𝑛, 𝑘𝑘, 𝑟𝑟 locally repairable code

[Chen-Huang-Li`07, Oggier-Datta`11, Gopalan-Simitci-Huang-Yekhanin`12, 
Papailiopoulos-Luo-Dimakis-Huang-Li’12]
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Locality

 A coordinate in a linear code has locality 𝑟𝑟 if it can be expressed as a linear 
combination of 𝑟𝑟 other coordinates

 If an 𝑤𝑤-th symbol 𝑐𝑐𝑖𝑖 is lost, it can be recovered by reading just 𝑟𝑟 other symbols
 Information locality 𝑟𝑟: all information symbols have locality 𝑟𝑟
 All-symbol locality 𝑟𝑟: all symbols have locality 𝑟𝑟

 Decouples typical decoding complexity 𝑟𝑟 from length 𝑛𝑛
 𝑟𝑟 reads for single failures, degraded reads
 No guarantees for more worst-case failures

[Chen-Huang-Li`07, Oggier-Datta`11, Gopalan-Huang-Simitci-Yekhanin`12, 
Papailiopoulos-Luo-Dimakis-Huang-Li’12]
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Parameters of LRCs

 Let 𝒞𝒞 be an 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC

 Assume that 𝑟𝑟|𝑘𝑘 and 𝑟𝑟 + 1|𝑛𝑛

 The rate is bounded by 𝒌𝒌
𝒏𝒏
≤

𝒓𝒓
𝒓𝒓 + 𝟏𝟏

114

Proof: 

There exist at most  
𝑛𝑛𝑛𝑛
𝑛𝑛+1

coordinates 

that determine the exact codeword

⟺ 𝒌𝒌 ≤
𝒏𝒏𝒓𝒓
𝒓𝒓 + 𝟏𝟏

[Gopalan-Huang-Simitci-Yekhanin`12]

x1 x2 x3 x4 px

y1 y2 y3 y4 py

z1 z2 z3 z4 pz

achieves the bound
since k/n=4/5 and r=4

For example,
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Parameters of LRCs

 Let 𝒞𝒞 be an 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC

 Assume that 𝑟𝑟|𝑘𝑘 and 𝑟𝑟 + 1|𝑛𝑛

 The minimum distance is bounded by

𝒅𝒅 ≤ 𝒏𝒏 − 𝒌𝒌 −
𝒌𝒌
𝒓𝒓

+ 𝟐𝟐

115

[Gopalan-Huang-Simitci-Yekhanin`12]

Remarks:
• Generalization of the singleton bound (𝑟𝑟 = 𝑘𝑘)

• An optimal 𝒏𝒏,𝒌𝒌, 𝒓𝒓 LRC achieves the bound with equality

𝒅𝒅 ≤ 𝒏𝒏 − 𝒌𝒌 + 𝟏𝟏



copyright @ Hong-Yeop Song

Optimal LRCs – Trivial (extreme) cases
 𝒓𝒓 = 𝒌𝒌

 𝑑𝑑 ≤ 𝑛𝑛 − 𝑘𝑘 + 1
 An 𝒏𝒏,𝒌𝒌 RS code is an 𝒏𝒏,𝒌𝒌, 𝒓𝒓 = 𝒌𝒌 optimal LRC
 𝔽𝔽 = 𝑂𝑂(𝑛𝑛)

 𝒓𝒓 = 𝟏𝟏
 𝑑𝑑 ≤ 2 𝑛𝑛

2
− 𝑘𝑘 + 1

 Duplication of an 𝒏𝒏/𝟐𝟐,𝒌𝒌 RS code is an 𝒏𝒏,𝒌𝒌, 𝒓𝒓 = 𝟏𝟏 optimal LRC
 𝔽𝔽 = 𝑂𝑂(𝑛𝑛)

 What happens for 1 < 𝑟𝑟 < 𝑘𝑘?

116

𝒅𝒅 ≤ 𝒏𝒏 − 𝒌𝒌 −
𝒌𝒌
𝒓𝒓

+ 𝟐𝟐
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Availability
 A symbol has availability 𝒕𝒕 if it can be read in parallel by 𝑤𝑤 + 1 disjoint groups of 

symbols
 These 𝑤𝑤 reads have locality 𝑟𝑟 if they involve up to 𝑟𝑟 symbols each

 Replication provides high availability for hot data

 Example: 3x replication

117

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

• Each symbol can be read in parallel 𝒕𝒕 + 𝟏𝟏 = 𝟑𝟑 times.
• Availability 𝑤𝑤 = 2. 
• Locality 𝑟𝑟 = 1.
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Availability for Hot Data

 “Hot data” is accessed simultaneously by a very large number of users

118

Loading... Loading...

Loading...
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Availability

 Goal
 A code with high availability and small storage overhead

 Solution
 LRC code with multiple disjoint recovery sets
 This is a code with availability

119
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Locality and Availability

 (14, 10) RS code

 Information locality 5

 Availability for m1

120

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 p1 p2 p3 p4

p5

⨁

p6

⨁⨁

p7
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Locality and Availability

 Block m1 can be read by 1 systematic read and 2 repair reads simultaneously

121

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 p1 p2 p3 p4

p5

⨁

p6

⨁⨁

p7

Want to read m1 Want to read m1 Want to read m1



Some constructions for 
LRC
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Local Parity

 An 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC    when 𝑟𝑟|𝑘𝑘

 Single parity check code is an LRC with 𝒅𝒅 = 𝟐𝟐

 𝑛𝑛 = 𝑘𝑘 + 𝑘𝑘
𝑛𝑛

and 𝑟𝑟 = 2 (with k even)

 The minimum distance bound for an 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC

𝑑𝑑 ≤ 𝑘𝑘 +
𝑘𝑘
𝑟𝑟 − 𝑘𝑘 −

𝑘𝑘
𝑟𝑟 + 2 = 2

 This is an optimal LRC for given 𝑛𝑛 and 𝑘𝑘

m1

m2

m5

m3

m4

m6

m7

m8

p1

p2

p3

p4

⊕

⊕

⊕

⊕
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Optimal LRC Example

124

x1 x2 x3 x4 px

y1 y2 y3 y4 py

z1 z2 z3 z4 pz

3 repair groups

Single parity check code is an LRC with 𝒅𝒅 = 𝟐𝟐
𝑛𝑛 = 𝑘𝑘 + 𝑘𝑘

𝑛𝑛
= 12 + 3 = 15 and 𝑟𝑟 = 4

The minimum distance bound for an 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC

𝑑𝑑 ≤ 𝑘𝑘 +
𝑘𝑘
𝑟𝑟 − 𝑘𝑘 −

𝑘𝑘
𝑟𝑟 + 2 = 2
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Single parity check code is optimal (when 𝑟𝑟|𝑘𝑘)

 Take 𝑟𝑟 info symbols at a time and add a single parity check for them

 Repeat this for all info symbols of size 𝑟𝑟 times some number, say, 𝑚𝑚.

 Length 𝒏𝒏 = 𝒎𝒎(𝒓𝒓 + 𝟏𝟏)
 Dimension 𝒌𝒌 = 𝒓𝒓𝒎𝒎 so  (𝑘𝑘/𝑟𝑟 = 𝑚𝑚)

 Minimum distance 𝒅𝒅 = 𝟐𝟐 and  RHS= 𝑛𝑛 − 𝑘𝑘 − 𝑘𝑘
𝑛𝑛

+ 2 = 𝑚𝑚 −𝑚𝑚 + 2 = 2

→ optimal
 Coderate 𝑘𝑘/𝑛𝑛 = 𝑟𝑟𝑚𝑚/𝑚𝑚(𝑟𝑟 + 1) = 𝑟𝑟/(𝑟𝑟 + 1)

→  optimal in the sense of coderate

125
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Global Parity and Local Parity

 An 𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC when 𝑟𝑟 + 1|𝑛𝑛

 𝑛𝑛′,𝑘𝑘 MDS code, and then, use

𝑟𝑟 + 1, 𝑟𝑟 single parity check code (for every 𝑟𝑟 of them)

 𝑛𝑛 = 𝑛𝑛′ 𝑛𝑛+1
𝑛𝑛

and 𝑛𝑛′ − 𝑘𝑘 + 1 ≤ 𝑑𝑑 ≤ 𝑛𝑛′ − 𝑘𝑘 + 2

 The minimum distance bound for an 𝑛𝑛,𝑘𝑘, 𝑟𝑟 LRC

𝑑𝑑 < 𝑛𝑛′
𝑟𝑟 + 1
𝑟𝑟 − 𝑘𝑘 −

𝑘𝑘
𝑟𝑟 + 2

 This is not an optimal LRC

126

m1

m2

m5

m3

m4

m6

m7

p1

p2

p3

p4⊕

p5⊕

p6⊕

p7⊕

p8⊕

(10,7) MDS
(15,10) SPC

d = 4              r = 2

4 < 15 − 7 − 2 = 6
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Pyramid Code – Information Locality

 Information Locality

 Take an 𝑘𝑘 + 𝑑𝑑 − 1, 𝑘𝑘 𝑞𝑞 Reed-Solomon code

 Split the first parity  so that each cover 1/2 of info symbols

 This gives 𝑛𝑛 = 𝑘𝑘 + 𝑑𝑑 − 1 + 𝑘𝑘
𝑛𝑛
− 1 = 𝑘𝑘 1 + 1

𝑛𝑛
+ 𝑑𝑑 − 2

127

[Chen-Huang-Li’07]

𝑐𝑐2 𝑐𝑐3
(9,6)
MDS

𝑐𝑐1

𝑐𝑐2 𝑐𝑐3
𝑐𝑐1,1

𝑐𝑐1,2

(10,6,3)
Pyramid

Information Locality 

𝑟𝑟 =
𝒌𝒌
𝟐𝟐 = 3

represents some suitable coefficients
when the parity symbol is generated.
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Pyramid Code – Information Locality

 Or,  cover 1/3 of info symbols

128

𝑐𝑐2 𝑐𝑐3

𝑐𝑐1,1

𝑐𝑐1,2

𝑐𝑐1,3

(11,6,2)
Pyramid

Information Locality 

𝑟𝑟 =
𝒌𝒌
𝟑𝟑

= 2

[Chen-Huang-Li’07]

• Pyramid codes can be obtained from any systematic MDS codes with 𝑑𝑑.
• Assume that the first parity check symbol is the sum ∑𝑖𝑖=1𝑘𝑘 𝑥𝑥𝑖𝑖 of info symbols.

• Replace this with 𝑘𝑘
𝑛𝑛

parity checks each of size at most 𝑟𝑟 on disjoint info 
symbols.

• Then, the resulting code 𝒞𝒞 has information locality 𝑟𝑟 and distance 𝑑𝑑,  while the 
redundancy is given by

𝒏𝒏 − 𝒌𝒌 = 𝒌𝒌
𝒓𝒓

+ 𝒅𝒅 − 𝟐𝟐.

Therefore, Pyramid codes are optimal.
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Explicit Codes with All-symbol Locality
 [Silberstein-Rawat-Koyluoglu-Vishwanath`13]

 Optimal length codes with all-symbol locality for 𝑞𝑞 = 2𝑛𝑛

 Constructions based on Gabidulin codes (maximum rank distance code)

 [Tamo-Barg`14]
 Optimal length codes with all-symbol locality for 𝑞𝑞 = 𝑂𝑂 𝑛𝑛
 Constructions based on RS codes

129
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Original view of RS codes
 Fix 𝑛𝑛 points:  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,…, 𝑥𝑥𝑛𝑛

 Given message vector 𝐚𝐚 = 𝑎𝑎0,𝑎𝑎1,𝑎𝑎2,𝑎𝑎3

 Make a polynomial  𝑓𝑓𝐚𝐚 𝑥𝑥 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3

 Generate(encode) a codeword 𝑓𝑓𝐚𝐚 𝑥𝑥1 ,𝑓𝑓𝐚𝐚 𝑥𝑥2 , … , 𝑓𝑓𝐚𝐚 𝑥𝑥𝑛𝑛

130

𝑥𝑥1

𝑓𝑓𝐚𝐚 𝑥𝑥1
𝑓𝑓𝐚𝐚 𝑥𝑥2

𝑥𝑥2

𝑓𝑓𝐚𝐚 𝑥𝑥3

𝑥𝑥3

𝑓𝑓𝐚𝐚 𝑥𝑥4

𝑥𝑥4

𝑓𝑓𝐚𝐚 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛

…
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Intuition behind the RS-like LRC

 A symbol 𝑓𝑓𝐚𝐚 𝑥𝑥1 is erased

𝑓𝑓𝐚𝐚 𝑥𝑥1 , 𝑓𝑓𝐚𝐚 𝑥𝑥2 , … , 𝑓𝑓𝐚𝐚 𝑥𝑥𝑛𝑛

 𝑓𝑓𝐚𝐚(𝑥𝑥1) can be recovered by RS decoding
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𝑥𝑥1

𝑓𝑓𝐚𝐚 𝑥𝑥1
𝑓𝑓𝐚𝐚 𝑥𝑥2

𝑥𝑥2

𝑓𝑓𝐚𝐚 𝑥𝑥3

𝑥𝑥3

𝑓𝑓𝐚𝐚 𝑥𝑥4

𝑥𝑥4

𝑓𝑓𝐚𝐚 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛

…

[Tamo-Barg`14]
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Intuition behind the RS-like LRC

 Assume that there is a linear polynomial that passes through the points 

𝒇𝒇𝐚𝐚 𝒙𝒙𝟏𝟏 ,𝒇𝒇𝐚𝐚 𝒙𝒙𝟎𝟎 and 𝒇𝒇𝐚𝐚 𝒙𝒙𝒊𝒊 of the codeword

 Only two points suffice to recover the lost point 𝑓𝑓𝐚𝐚 𝑥𝑥1
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𝑥𝑥1

𝑓𝑓𝐚𝐚 𝑥𝑥1
𝑓𝑓𝐚𝐚 𝑥𝑥2

𝑥𝑥2

𝑓𝑓𝐚𝐚 𝑥𝑥3

𝑥𝑥3

𝑓𝑓𝐚𝐚 𝑥𝑥4

𝑥𝑥4

𝑓𝑓𝐚𝐚 𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖

…

𝑓𝑓𝐚𝐚 𝑥𝑥5

𝑥𝑥5

𝑓𝑓𝐚𝐚 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛

…

[Tamo-Barg`14]
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RS-like Codes

 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴 𝑛𝑛
𝑟𝑟+1

are disjoint subsets, each of size 𝒓𝒓 + 𝟏𝟏

 𝒈𝒈 𝒙𝒙 ∈ 𝔽𝔽[𝒙𝒙] is a polynomial such that
 deg 𝑤𝑤 𝑥𝑥 = 𝒓𝒓 + 𝟏𝟏
 𝑤𝑤 𝑥𝑥 is constant on each subset 𝑨𝑨𝒋𝒋 :         𝑤𝑤 𝛼𝛼 = 𝑤𝑤 𝛽𝛽 , for 𝛼𝛼,𝛽𝛽 ∈ 𝐴𝐴𝑗𝑗

 Encoding:
 Given 𝒌𝒌 information symbols 𝒂𝒂𝒊𝒊,𝒋𝒋, 𝑤𝑤 = 0,1, … , 𝑟𝑟 − 1, 𝑗𝑗 = 0,1, … , 𝑘𝑘

𝑛𝑛
− 1

 Define the polynomial

𝑓𝑓𝒂𝒂 𝑥𝑥 = �
𝑖𝑖=0

𝑛𝑛−1
𝒙𝒙𝒊𝒊 �

𝑗𝑗=0

𝑘𝑘
𝑛𝑛−1 𝒂𝒂𝒊𝒊,𝒋𝒋 𝑤𝑤 𝑥𝑥 𝑗𝑗

 The codeword of length 𝑛𝑛 is 𝑓𝑓 𝛼𝛼 : 𝛼𝛼 ∈ ⋃𝑖𝑖=1

𝑛𝑛
𝑟𝑟+1 𝐴𝐴𝑖𝑖

133
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Example : (𝑛𝑛 = 9,𝑘𝑘 = 4, 𝑟𝑟 = 2) LRC code over 𝔽𝔽𝑞𝑞

134

• Since we need 9 distinct evaluation points of the field, we must choose 𝑞𝑞 ≥ 9.

• We will define the code 𝒞𝒞 over 𝔽𝔽13.

• Let the partition of all the nonzero elements of 𝔽𝔽13 be as follows:

𝑨𝑨𝟏𝟏 = 𝟏𝟏,𝟑𝟑,𝟗𝟗 , 𝑨𝑨𝟐𝟐 = 𝟐𝟐,𝟏𝟏,𝟎𝟎 = 2𝐴𝐴1, 𝑨𝑨𝟑𝟑 = 𝟒𝟒,𝟏𝟏𝟐𝟐,𝟏𝟏𝟎𝟎 = 4𝐴𝐴1
• Note that 𝒈𝒈 𝒙𝒙 = 𝒙𝒙𝟑𝟑 is constant on any set 𝐴𝐴𝑖𝑖

• Let 𝑎𝑎 = 𝑎𝑎0,0,𝑎𝑎0,1,𝑎𝑎1,0,𝑎𝑎1,1 be the information vector of length 𝑘𝑘 = 4 over 𝔽𝔽13
• Define the encoding polynomial 

𝑓𝑓𝑎𝑎 𝑥𝑥 = 𝑎𝑎0,0𝑤𝑤 𝑥𝑥 0 + 𝑎𝑎0,1𝑤𝑤 𝑥𝑥 1 + 𝑥𝑥 𝑎𝑎1,0𝑤𝑤 𝑥𝑥 0 + 𝑎𝑎1,1𝑤𝑤 𝑥𝑥 1

= 𝑥𝑥0 𝑎𝑎0,0 + 𝑎𝑎0,1𝑥𝑥3 + 𝑥𝑥1 𝑎𝑎1,0 + 𝑎𝑎1,1𝑥𝑥3

= 𝑎𝑎0,0 + 𝑎𝑎1,0𝑥𝑥 + 𝑎𝑎0,1𝑥𝑥3 + 𝑎𝑎1,1𝑥𝑥4

𝑎𝑎0,0 + 𝑎𝑎0,1𝑥𝑥3 is constant on all 𝑥𝑥 ∈ 𝐴𝐴𝑖𝑖 𝑎𝑎1,0 + 𝑎𝑎1,1𝑥𝑥3 is constant on all 𝑥𝑥 ∈ 𝐴𝐴𝑖𝑖

degree < 𝑟𝑟

NOT a magic
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Locality

 It is one less than the size of each subset 𝐴𝐴𝑖𝑖 Therefore, it is 𝒓𝒓

 How to recover 𝒇𝒇 𝜶𝜶 for 𝜶𝜶 ∈ 𝑨𝑨𝟏𝟏 ?

 Define 𝒇𝒇𝒊𝒊 𝒙𝒙 = ∑𝒋𝒋=𝟎𝟎
𝒌𝒌
𝒓𝒓−𝟏𝟏 𝒂𝒂𝒊𝒊,𝒋𝒋 𝒈𝒈 𝒙𝒙 𝒋𝒋 so that the encoding 

polynomial is 

𝑓𝑓 𝑥𝑥 = �
𝑖𝑖=0

𝑛𝑛−1
𝑥𝑥𝑖𝑖 �

𝑗𝑗=0

𝑘𝑘
𝑛𝑛−1 𝑎𝑎𝑖𝑖,𝑗𝑗 𝑤𝑤 𝑥𝑥 𝑗𝑗 = �

𝑖𝑖=0

𝑛𝑛−1
𝑥𝑥𝑖𝑖 𝒇𝒇𝒊𝒊 𝒙𝒙

 Observe that 𝒇𝒇𝒊𝒊 𝒙𝒙 is constant on the any set 𝑨𝑨𝒋𝒋 (∵so is 𝒈𝒈 𝒙𝒙 ).

 Define 𝛿𝛿 𝑥𝑥 = ∑𝑖𝑖=0𝑛𝑛−1 𝑥𝑥𝑖𝑖 𝒇𝒇𝒊𝒊 𝜶𝜶 .     

 Then 𝒇𝒇 𝜶𝜶 = 𝜹𝜹(𝜶𝜶), and deg 𝛿𝛿 𝑥𝑥 ≤ 𝑟𝑟 − 1

 Any 𝒓𝒓 points on 𝛿𝛿 𝑥𝑥 will suffice to recover 𝛿𝛿 𝑥𝑥

 Use the 𝑟𝑟 values 𝛿𝛿 𝛽𝛽 = 𝑓𝑓 𝛽𝛽 :𝛽𝛽 ∈ 𝐴𝐴1 ∖ 𝛼𝛼 to recover 𝛿𝛿 𝑥𝑥
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Example (continued):

136

 The codeword 𝑐𝑐 that corresponds to 𝑎𝑎 is found as the 
evaluation of the polynomial 𝑓𝑓𝑎𝑎 at all the points of the sets 
of the partition 𝒜𝒜

 If 𝐚𝐚 = 1, 1, 1, 1 , then the codeword becomes 
𝒇𝒇𝐚𝐚 𝟏𝟏 ,𝒇𝒇𝐚𝐚 𝟑𝟑 ,𝒇𝒇𝐚𝐚 𝟗𝟗 ,𝒇𝒇𝐚𝐚 𝟐𝟐 ,𝒇𝒇𝐚𝐚 𝟏𝟏 ,𝒇𝒇𝐚𝐚 𝟎𝟎 ,𝒇𝒇𝐚𝐚 𝟒𝟒 ,𝒇𝒇𝐚𝐚 𝟏𝟏𝟐𝟐 ,𝒇𝒇𝐚𝐚 𝟏𝟏𝟎𝟎

= 𝟒𝟒,𝟖𝟖,𝟕𝟕,𝟏𝟏,𝟏𝟏𝟏𝟏,𝟐𝟐,𝟎𝟎,𝟎𝟎,𝟎𝟎

 suppose that the value 𝑐𝑐1 = 𝑓𝑓𝐚𝐚 1 is erased

 Find the unique polynomial 𝛿𝛿 𝑥𝑥 of degree less than 𝑟𝑟 = 2
such that 𝛿𝛿 𝛽𝛽 = 𝑓𝑓𝐚𝐚 𝛽𝛽 for all 𝛽𝛽 ∈ 𝐴𝐴1\1

 It can be recovered by accessing two other codeword 
symbols at locations corresponding to 3 and 9

using polynomial interpolation
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Example (continued): Polynomial Interpolation
 Given a set of 𝑘𝑘 + 1 points

𝑥𝑥0,𝑦𝑦0 , 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , … , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘
where no two 𝑥𝑥𝑗𝑗’s are the same, 

 the interpolation polynomial in the Lagrange form is a linear combination 

𝐿𝐿 𝑥𝑥 = �
𝑗𝑗=0

𝑘𝑘

𝑦𝑦𝑗𝑗𝒍𝒍𝒋𝒋 𝒙𝒙

of Lagrange basis polynomials 

𝒍𝒍𝒋𝒋 𝒙𝒙 = ∏0≤𝑚𝑚≤𝑘𝑘
𝑚𝑚≠𝑗𝑗

𝑥𝑥−𝑥𝑥𝑚𝑚
𝑥𝑥𝑗𝑗−𝑥𝑥𝑚𝑚

with 𝒍𝒍𝒋𝒋 𝒙𝒙𝒋𝒋 = 𝟏𝟏 and  𝒍𝒍𝒋𝒋≠𝒊𝒊 𝒙𝒙𝒊𝒊 = 𝟎𝟎

 It follows that 𝒚𝒚𝒋𝒋𝒍𝒍𝒋𝒋 𝒙𝒙𝒋𝒋 = 𝒚𝒚𝒋𝒋

 Therefore, at each point 𝒙𝒙𝒊𝒊, 
𝑳𝑳 𝒙𝒙𝒊𝒊 = 𝒚𝒚𝒊𝒊 + 𝟎𝟎 + 𝟎𝟎 + ⋯+ 𝟎𝟎 = 𝒚𝒚𝒊𝒊
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=
𝑥𝑥 − 𝑥𝑥0
𝑥𝑥𝑗𝑗 − 𝑥𝑥0

�
𝑥𝑥 − 𝑥𝑥1
𝑥𝑥𝑗𝑗 − 𝑥𝑥1

� ⋯ �
𝑥𝑥 − 𝑥𝑥𝑗𝑗−1
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗−1

�
𝑥𝑥 − 𝑥𝑥𝑗𝑗+1
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗+1

� ⋯ �
𝑥𝑥 − 𝑥𝑥𝑘𝑘
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘

of degree at most 𝒌𝒌
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Example (continued): recovery

 To find one erased symbol, we need to perform polynomial interpolation from 𝑟𝑟 = 2
known symbols in its recovery set 1,4 , 𝟑𝟑,𝟖𝟖 , 𝟗𝟗,𝟕𝟕

 Now, the interpolation polynomial 𝛿𝛿 𝑥𝑥 is 

𝜹𝜹 𝒙𝒙 = 𝒇𝒇𝐚𝐚 𝟑𝟑 𝒍𝒍𝟑𝟑 𝒙𝒙 + 𝒇𝒇𝐚𝐚 𝟗𝟗 𝒍𝒍𝟗𝟗 𝒙𝒙 ,

where 𝑙𝑙𝑖𝑖 𝑥𝑥 = ∏𝑗𝑗∈{3,9}∖𝑖𝑖
𝑥𝑥−𝑗𝑗
𝑖𝑖−𝑗𝑗

 𝜹𝜹 𝒙𝒙 = 𝟖𝟖 � 𝒙𝒙−𝟗𝟗
𝟑𝟑−𝟗𝟗

+ 𝟕𝟕 � 𝒙𝒙−𝟑𝟑
𝟗𝟗−𝟑𝟑

= 𝟐𝟐𝒙𝒙 + 𝟐𝟐

 Therefore, we can find the erased value 𝒇𝒇𝐚𝐚 𝟏𝟏 = 𝜹𝜹 𝟏𝟏 = 𝟒𝟒
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𝑙𝑙3 𝑥𝑥 = 𝑥𝑥−9
3−9

,       𝑙𝑙9 𝑥𝑥 = 𝑥𝑥−3
9−3
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Optimality
 Encoding polynomial

𝒇𝒇𝐚𝐚 𝒙𝒙 = �
𝑖𝑖=0

𝑛𝑛−1
𝑥𝑥𝑖𝑖 𝑓𝑓𝑖𝑖 𝑥𝑥 = �

𝑖𝑖=0

𝑛𝑛−1
𝑥𝑥𝑖𝑖 �

𝑗𝑗=0

𝑘𝑘
𝑛𝑛−1 𝑎𝑎𝑖𝑖,𝑗𝑗 𝑤𝑤 𝑥𝑥 𝑗𝑗 ,

 𝑘𝑘 polynomials 𝑤𝑤 𝑥𝑥 𝑗𝑗𝑥𝑥𝑖𝑖 all are of distinct degrees, and therefore are linearly 
independent over 𝔽𝔽

 The deg of 𝒇𝒇𝐚𝐚 𝒙𝒙 is at most 𝑘𝑘
𝑛𝑛
− 1 𝑟𝑟 + 1 + 𝑟𝑟 − 1 = 𝑘𝑘 + 𝑘𝑘

𝑛𝑛
− 2 = 𝑛𝑛 − 2

 Two distinct encoding polynomials gives rise to two distinct code-vectors
 So the dimension of the code is 𝒌𝒌

 The code distance satisfies 

𝒅𝒅 𝑪𝑪 ≥ 𝒏𝒏 − 𝐦𝐦𝐚𝐚𝐦𝐦
𝒇𝒇𝒂𝒂, 𝒂𝒂∈𝔽𝔽𝒒𝒒𝒌𝒌

𝐝𝐝𝐝𝐝𝐝𝐝 𝒇𝒇𝒂𝒂 = 𝒏𝒏 − 𝒌𝒌 −
𝒌𝒌
𝒓𝒓 + 𝟐𝟐
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 Using a Parity-check matrix

 𝑛𝑛 = 15,𝑘𝑘 = 10

 This code has 𝒅𝒅𝒎𝒎𝒊𝒊𝒏𝒏 = 𝟒𝟒 and locality 𝒓𝒓 = 𝟏𝟏
 Best achievable minimum distance for given 𝑛𝑛 and 𝑘𝑘
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⇔ 𝐻𝐻 =
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Binary Locally Repairable Codes
[Shahabinejad-Khabbanzian-Ardakani`14]

𝑃𝑃𝑇𝑇 𝐼𝐼10×10

𝑃𝑃𝐼𝐼5×5

Every row of H has weight 7
1st row:  𝒄𝒄𝟏𝟏 + 𝒄𝒄𝟏𝟏𝟎𝟎 + 𝒄𝒄𝟏𝟏𝟏𝟏 + 𝒄𝒄𝟏𝟏𝟐𝟐 + 𝒄𝒄𝟏𝟏𝟑𝟑 + 𝒄𝒄𝟏𝟏𝟒𝟒 + 𝒄𝒄𝟏𝟏𝟎𝟎 = 𝟎𝟎
 𝒄𝒄𝟏𝟏 = 𝒄𝒄𝟏𝟏𝟎𝟎 + 𝒄𝒄𝟏𝟏𝟏𝟏 + 𝒄𝒄𝟏𝟏𝟐𝟐 + 𝒄𝒄𝟏𝟏𝟑𝟑 + 𝒄𝒄𝟏𝟏𝟒𝟒 + 𝒄𝒄𝟏𝟏𝟎𝟎

no 3 columns are linearly dependent
But some 4 columns are dependent

𝒅𝒅𝒎𝒎𝒊𝒊𝒏𝒏 = 𝟒𝟒
because 
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Binary Locally Repairable Codes

 Using a Generator Matrix 

 Complete graph: 𝑑𝑑 = 𝑘𝑘, 𝑤𝑤 = 𝑑𝑑 − 1

 𝑝𝑝-partite graph: 𝑑𝑑 = 𝑘𝑘 − 𝑘𝑘
𝑝𝑝

+ 1, 𝑤𝑤 = 𝑑𝑑 − 1
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𝐺𝐺 =
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Example: 𝑛𝑛 = 21, 𝑘𝑘 = 6,𝑑𝑑 = 6, 𝑟𝑟 = 2

Example: 𝑛𝑛 = 15, 𝑘𝑘 = 6,𝑑𝑑 = 4, 𝑟𝑟 = 2
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This gives all-symbol availability

This gives information-symbol availability

[Kim-Nam-Song`15]
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Innovative Proposals

 Erasure codes with some form of locality

 Microsoft Azure Storage

 (16, 12, 6) LRC 

142

x1 x3x2 x5x4 y1 y3y2 y5y4x6 p2p1y6

px py

• Global parities p1,p2 are found from all xi,yi, i=1,2,…,6

• Local parities px, py provide local recovery for the information symbols
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Innovative Proposals

 HDFS Xorbas (Facebook)

 (16, 10, 5) LRC 
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x1 x3x2 x5x4 x6 x8x7 x10x9 p2p1 p4p3

s1 s2 s3

c1
c2

c3 c5c4 c7c6
c8 c9 c10 f1

f2 f3 f4

f5
f6

x3=c3
-1(s1-c1x1-c2x2-c4x4-c5x5)

p1=f1-1(-s1-s2-f2p2-f3p3-f4p4)

Implied parity

• Global parity
(14,10) RS code

• Local parity
s1=c1x1+c2x2+c3x3+c4x4+c5x5
s2=c6x6+c7x7+c8x8+c9x9+c10x10

One additional optimization
s1+s2+s3=0
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